# An investigation into the treatment of co-mingled saline-hydrocarbon affected soil and groundwater

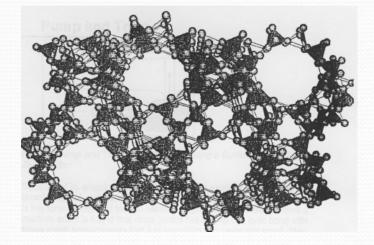
by:

Gordon H. Bures, M.Eng., P.Eng. Frac Rite Environmental Ltd.

Dr. Edwin Liem, Ph.D., Black Earth Humates Ltd.










- What are Zeolites and Humates?
- Existing environmental applications
- Rationale for column testing
- Column testing and results
- Conceptual field pilot application

### **Zeolites**





- Naturally occurring, crystalline, porous aluminosilicate structure
- Anionic framework, high CEC
- Open structure, molecular "sieve" traps contaminants

### Zeolite Column Test Results: 2005

TABLE 3 – Column Test Salinity Parameters

| PORE      |                                | CO                              | LUMN 1: | DISCHARGE  | WATER                     | SALINITY | (-14 + 100 MESH ZEOLITE) |        | LITE)  |      |
|-----------|--------------------------------|---------------------------------|---------|------------|---------------------------|----------|--------------------------|--------|--------|------|
| VOLUMES:  | CI                             | EC                              | SO4     | TDS        | pН                        | Ca       | к                        | Mg     | Na     | SAF  |
|           | (mg/L)                         | (uS/cm)                         | (mg/L)  | (mg/L)     |                           | (mg/L)   | (mg/L)                   | (mg/L) | (mg/L) |      |
| PRE-TEST  | 9630                           | 19500                           | 439     | 13600      | 7.0                       | 2430     | 66.0                     | 579    | 2410   | 11.4 |
| 0-2       | 8920                           | 17500                           | 378     | 12200      | 6.9                       | 3230     | 260.0                    | 496    | 1080   | 4.7  |
| 20-22     | 9590                           | 19000                           | 405     | 13300      | 7.2                       | 2430     | 232.0                    | 565    | 2310   | 11.0 |
| 40-42     | 9660                           | 19300                           | 395     | 13500      | 7.2                       | 2380     | 168.0                    | 565    | 2350   | 11.3 |
| 60-62     | 9770                           | 19900                           | 401     | 14000      | 7.3                       | 2430     | 129.0                    | 571    | 2400   | 11.4 |
| 80-82     | 9670                           | 19400                           | 373     | 13600      | 7.4                       | 2320     | 90.4                     | 547    | 2280   | 11.1 |
| 100-102   | 9840                           | 19500                           | 477     | 13600      | 7.5                       | 2460     | 95.6                     | 578    | 2440   | 11.5 |
| 120-122   | 9910                           | 19700                           | 412     | 13800      | 7.6                       | 2580     | 96.0                     | 602    | 2540   | 11.7 |
| PORE      |                                | COLUMN 2: DISCHARGE WATER SALIN |         | R SALINITY | Y (-14 + 40 MESH ZEOLITE) |          |                          |        |        |      |
| VOLUMES:  | СІ                             | EC                              | SO4     | TDS        | pН                        | Ca       | к                        | Mg     | Na     | SAF  |
|           | (mg/L)                         | (uS/cm)                         | (mg/L)  | (mg/L)     |                           | (mg/L)   | (mg/L)                   | (mg/L) | (mg/L) |      |
| PRE-TEST  | 9630                           | 19500                           | 439     | 13600      | 7.0                       | 2430     | 66.0                     | 579    | 2410   | 11.4 |
| 0-2       | 8200                           | 17000                           | 321     | 11900      | 7.0                       | 2860     | 239.0                    | 436    | 1200   | 5.5  |
| 20-22     | 9450                           | 19300                           | 386     | 13500      | 7.2                       | 2490     | 218.0                    | 578    | 2340   | 11.0 |
| 40-42     | 9610                           | 19500                           | 383     | 13600      | 7.3                       | 2450     | 156.0                    | 570    | 2370   | 11.3 |
| 60-62     | 9580                           | 19300                           | 386     | 13500      | 7.5                       | 2250     | 129.0                    | 533    | 2230   | 11.0 |
| 80-82     | 9640                           | 19500                           | 410     | 13600      | 7.4                       | 2350     | 122.0                    | 552    | 2310   | 11.3 |
| 100-102   | 9570                           | 19800                           | 374     | 13800      | 7.5                       | 2390     | 101.0                    | 560    | 2360   | 11.3 |
| 120-122   | 9680                           | 19400                           | 400     | 13600      | 7.5                       | 2400     | 98.5                     | 562    | 2360   | 11.3 |
| 140-142   | 9790                           | 19500                           | 394     | 13600      | 7.6                       | 2570     | 114.0                    | 609    | 2550   | 11.7 |
| POST      | ZEOLITE SALINITY AFTER TESTING |                                 |         |            |                           |          |                          |        |        |      |
| TEST      | CI                             | EC                              | SO4     | SPECIFIC   | pН                        | Ca       | к                        | Mg     | Na     | SAF  |
| ZEOLITE:  | (mg/L)                         | (dS/m)                          | (mg/L)  | GRAVITY    |                           | (mg/L)   | (mg/L)                   | (mg/L) | (mg/L) |      |
| US MESH : |                                |                                 |         |            |                           |          |                          |        |        |      |
| -14 + 100 | 6070                           | 17.9                            | 334     | 1.49       | 7.5                       | 1920     | 71                       | 176    | 1980   | 11.0 |
| -14 + 40  | 4070                           | 13.0                            | 226     | 1.25       | 7.7                       | 1120     | 60                       | 96     | 1490   | 113  |

Note: Cl – chloride; EC – Electrical Conductivity; SO<sub>4</sub> – sulphate; TDS – Total Dissolved Solids; Ca – calcium; K – potassium; Mg – magnesium; Na – sodium; SAR – Sodium Adsorption Ratio.

TABLE 1 – Column Test Specifications

| Parameter                        | Specifications (actual)          |                                                 |  |  |  |
|----------------------------------|----------------------------------|-------------------------------------------------|--|--|--|
| Farameter                        | -14 + 100 zeolite test column    | <ul> <li>14 + 40 zeolite test column</li> </ul> |  |  |  |
| Dry weight                       | 324 g                            | 300 g                                           |  |  |  |
| Wet weight                       | 330 g                            | 330 g                                           |  |  |  |
| Pore volume                      | 249 cm <sup>3</sup>              | 209 cm <sup>3</sup>                             |  |  |  |
| Sample dimensions<br>(saturated) | 101 mm Height x 67.5 mm Diameter | 88 mm Height x 67.5 mm Diamete                  |  |  |  |
| Consolidation Pressure           | 60 kPa                           | 60 kPa                                          |  |  |  |
| Water feed rate                  | 10 ml/min <u>+</u> 15%           | 10 ml/min <u>+</u> 15%                          |  |  |  |
| Column water head                | 1 m ± 10%                        | 1 m ± 10%                                       |  |  |  |
| Sampling frequency               | 7.60 hrs                         | 6.25 hrs                                        |  |  |  |
| No. of samples taken             | 7                                | 8                                               |  |  |  |
| Total test volume                | 30.4 litres                      | 29.7 litres                                     |  |  |  |
| Test duration                    | 53.2 hrs                         | 50 hrs                                          |  |  |  |

- High permeability:
   K = 10<sup>-4</sup> m/s
- Na reduced 60%
- Cl reduced 15%
- SAR reduced from 11.4 to 4.7

### **Humates**



- HUMATES: Organic material formed from the decay of plant and animal residues. Large organic molecules with many functional groups.
- Comprised of 90% C and O
- 10% H, N, S and trace elements
- Two main components of Humates are HUMIC and FULVIC acid
- ATTRIBUTES:
- Chelator to fixate sodium
- Increases solubility of PHCs
- Provides carbon for Microbes to convert PHCs to acids and sugars
- Cation and water retention

### HUMATE COMPARISONS % Total Humic Acids - Dry Matter



----. 1998, 2000, 2004, 2006, 2008, 2011. Lab Reports. A&L Western Laboratories, Modesto, CA. 6 pages.

Hoffman, G. K. et al. 1994. Overview of Humate Production in North America. (In) Proceedings 30th Forum on the Geology of Industrial Minerals. 54 – 70.



# **Present Remedial Applications**

- Mine tailings remediation for metals reduction (humates)
- Treatment of co-produced saline formation waters in oil and gas industry (zeolites)
- Phytoremediation (humates and zeolites)
- Treatment of saline-hydrocarbon drilling mud returns (humates and zeolites)
- Treatment of sodic soils in dry land farming (humates)

### **Rationale for Treatability Testing**

Zeolites/humates have been used in reclamation to remediate surficial soils, but ...



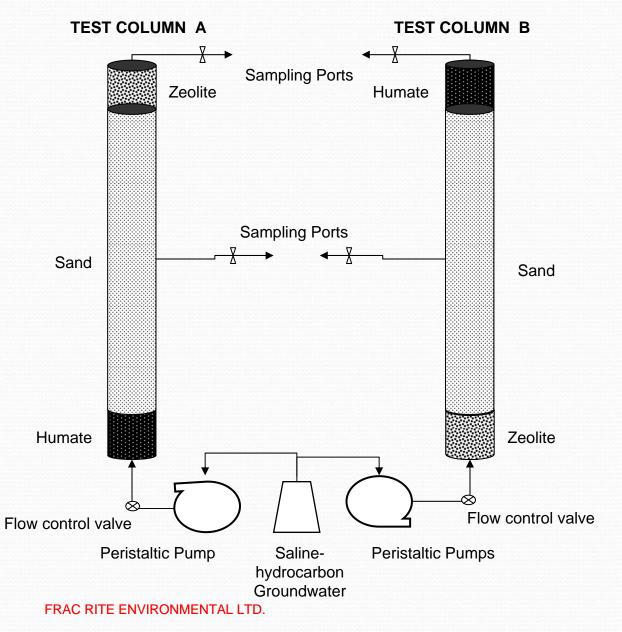
There isn't yet a commonly used *in situ* approach to cost-effectively treat deeper impacted subsoils.

- Co-mingled salinehydrocarbon impacts reside at many existing and former facilities for which a passive and cost-effective *in situ* remedial approach is needed, especially in deeper subsoils.
- This approach needs to address both soil and groundwater impacts

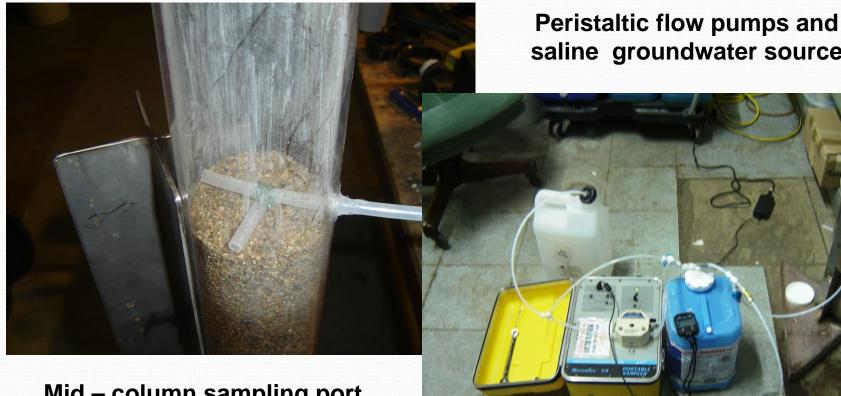
# Humate and Zeolite Column Testing

- Concept evolved from 2005 zeolite column study on sodic/saline impacted groundwater to include treatment of co-mingled petroleum hydrocarbons
- IRAP supported column study was prepared in 2009-2010 to study potential for using combination of humates and zeolites to remediate petroleum hydrocarbons concurrently with salts through physical attenuation mechanisms
- Humates also facilitate biodegradation of PHCs, which was not examined in column study

# **Test Objectives**


The specific objectives of the laboratory testing program were to evaluate the performance of the combination of amendments with respect to:

- Reduction in salinity indicator parameters;
- Reduction in sodium and chloride concentrations;
- Reduction petroleum hydrocarbon constituents (i.e. BTEX, F1, F2);
- Remediation effectiveness relative to the sequence of treatment in the test columns;
- Sodium and salinity retention as measured by Sodium Adsorption Ratio (SAR) and Electrical Conductivity, respectively; and,
- Efficacy for implementation of zeolites and humates in the field for passive treatment of saline-hydrocarbon impacted soil and groundwater.


Configuration of Test-Co

#### **Column Test Specifications**

| Danamatan                         | Specifications (actual)                |                                        |  |  |
|-----------------------------------|----------------------------------------|----------------------------------------|--|--|
| Parameter                         | Column A                               | Column B                               |  |  |
| Sand weight                       | 3,654.9 g                              | 3,674.5 g                              |  |  |
| Humates<br>weight                 | 959.0 g                                | 1,015.2 g                              |  |  |
| Zeolites<br>weight                | 1,212.9 g                              | 1,137.1 g                              |  |  |
| Configurati<br>on bottom-<br>top  | Humates -<br>Zeolites                  | Zeolites -<br>Humates                  |  |  |
| Humate<br>Dimensions              | 300 mm<br>Height x 68.5<br>mm Diameter | 320 mm<br>Height x 68.5<br>mm Diameter |  |  |
| Zeolite<br>Dimensions             | 320 mm<br>Height x 68.5<br>mm Diameter | 300 mm<br>Height x 68.5<br>mm Diameter |  |  |
| Total<br>column<br>pore<br>volume | 2,000 cm <sup>3</sup>                  | 2,000 cm <sup>3</sup>                  |  |  |
| Flow rate                         | 50 ml/min                              | Variable: 5-<br>59ml/min               |  |  |
| Sampling frequency                | 40min                                  | variable                               |  |  |
| No. of samples taken              | 11 water, 2<br>"soil"                  | 8 water, 2<br>"soil"                   |  |  |
| Total test<br>volume              | 13 litres                              | 14 litres                              |  |  |
| Test<br>duration                  | 4:41                                   | 16:47                                  |  |  |

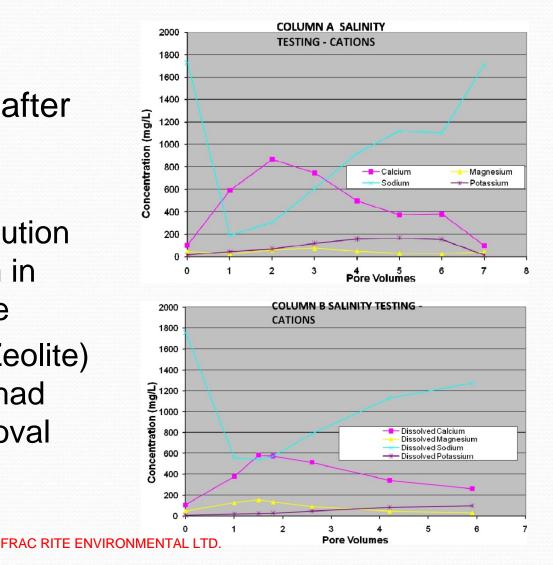


# **Column Construction and Apparatus**



saline groundwater source

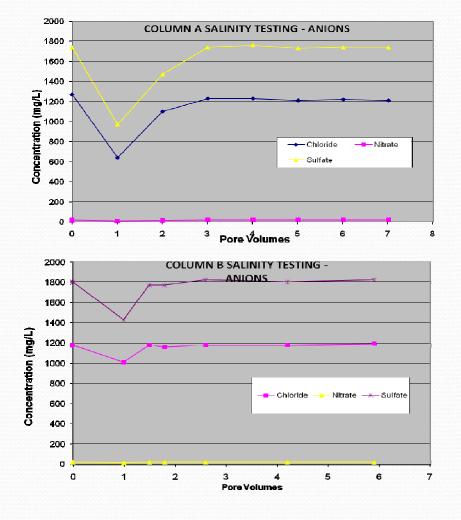
Mid – column sampling port construction


# **Geotechnical Properties**

|                  | Geotechnical Properties               |                                            |                            |  |  |
|------------------|---------------------------------------|--------------------------------------------|----------------------------|--|--|
| Test Parameter   | Humate<br>-10+40 mesh<br>"leonardite" | Zeolite<br>-14+40 mesh<br>"clinoptilolite" | Silica Sand<br>-16+40 mesh |  |  |
| Specific gravity | 1.3                                   | 2.3                                        | 2.6                        |  |  |
| Porosity (%)     | 29                                    | 58                                         | 36                         |  |  |

### **Results – Sodium Reduction**

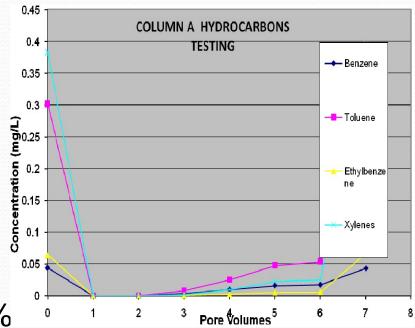
Maximum reduction in sodium concentration after <u>2-3 pore volumes</u>:


- Cation exchange manifested as substitution of calcium for sodium in zeolite latice structure
- Column A (Humate-Zeolite) treatment sequence had greatest sodium removal (89%)

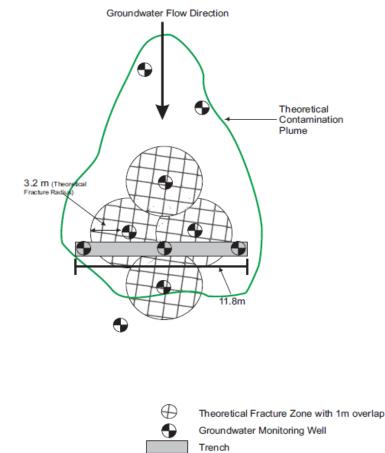


## **Results – Chloride Reduction**

Maximum reduction in chloride concentration after <u>1 pore volume</u>:


- Column A (Humate-Zeolite) treatment sequence had greatest chloride removal (50%)
- 35% of chloride attenuation attributable to humates, and 15% to zeolites




# **Results – BTEX Reduction**

- Significant reduction in BTEX concentration after <u>2-6 pore</u> <u>volumes (Column A)</u>
- Concentrations of BTEX in effluent stream reduced to ND concentrations at 1 – 2 pore volumes
- Humates responsible for <u>></u> 87% of BTEX adsorption





# Conceptual Salt – Hydrocarbon Treatment Barrier



- Hydraulic Fractures create a network of interconnected sand drainage pathways to direct flow in a low permeability soil towards a zeolite/humate treatment trench.
- System can be easily scaled up to include captive deionizations or reverse osmosis.

(2012 IRAP Phase 2 Field Pilot)

### **Salt Remediation using Interceptor Trenches**



#### Objective:

Create a network of sand drainage fractures to connect with interceptor trenches for enhancing salt capture and treatment using reverse osmosis.



 Most effective treatment results for salinity and petroleum hydrocarbon constituents were in Column A, i.e. humate treatment followed by zeolite treatment.

 Chloride reduction also noted in this configuration, possibly attributable to attenuation of chloride compounds in solution.

 Column test results are conservative in that they don't consider bioremediation processes

 Column test results can be used in design of treatment trench to conduct a field pilot