ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

Age dating a heating oil release: investigations into liability ownership following a spill and associated reclamation

D.A. Birkholz, MSc, PhD, P.Chem M. Flynn – Rochon Engineering

Right solutions....

Background

- Fuel tank, containing heating oil was found to have leaked during investigation.
- Contamination of large amount of area observed
- Following reporting to provincial regulators a costly reclamation ordered
- Current owner of property liable (buyer beware!)
- Owner claimed that he never used the tank

Background

- At issue is the nature and age of oil in the tank
- If it could be proven the oil was at least 10 years old then liability could shift to previous owner. Time of property transfer
- Failing to report a spill may also result in a prosecution and further vindication for the client.
- Phase I audit by consultant suggested the fuel was at least 30 years old.
- ALS commissioned to prove it

Methods

- Received the following samples:
- 2 year old home heating oil (independent source)
- Sludge from tank on property (alleged source of spill).
- An aliquot of fuel (50 mg) diluted to 10 mL with DCM
- An aliquot of sludge (1.0 g) was diluted with 100 mL DCM.
- Analyses performed by GC/FID and GC/MS (scanning and SIM)

RT.9.21 - 49.54

Ś

Time (min)

GC/FID Data

Sample	Pristane/ Phytane	n-C ₁₇ /pristane	Age (years)
Fresh	1.61 ± 0.19	Ratio based on N.J 2002-2007	
Moderate	1.73 ± 0.21		
Degraded	1.59 ± 0.23	From Oudijk, 2009	
Very degraded	1.18 ± 0.40		
2-year old fuel	1.42	1.95	3.4 ± 2
Sludge	1.19	1.85	4.3 ± 2
Critical Difference	No Match	Match	

Christensen and Larson Method (1993)

- Applies to middle distillates (heating oil)
- T (years) = -8.4 (n-C₁₇/pristane) + 19.8 (Kaplan 1997)
- Error is ± 2 years (Oudijk, 2009).
- Error is ± 1.5 years under optimal conditions and ± 5 years under the worst case conditions (Hurst and Schmidt (2005)
- Accepted by the courts in New Jersey and Massachusetts
- Is a viable method <u>if it is used within prescribed</u> <u>limitations.</u>
- Cannot be used anywhere and everywhere
- Literature cites many cases where this method does not apply
- Ref: Oudijk et al, 2006; Oudijk, 2009

Age of Product

- Need more than just Christensen and Larsen method to determine age.
- Considering <u>possible litigation</u>, it would be risky to just use this method
- Another approach follows the depletion of select chemical classes as a function of soil type
- This approach provides a weight of evidence approach and age range.
- Ref: Oudijk (2009).

Stages in Biodegradation of Heating Oil

Stage	Description	
1	Abundant n-alkanes	
2	Light end n-alkanes removed	
3	Middle range n-alkanes, benzene, toluene removed	
4	More than 90% of n-alkanes removed	
5	Alkylcyclohexanes and alkylbenzenes removed	
6	Isoprenoids, C1-naphthalanes, benzothiophene and alkylbenzothiophenes removed, C2-naphthalenes selectively reduced	
7	Phenanthrenes, dibenzothiophenes, and other PAHs reduced	
Reference: Oudijk (2009)		

Kaplan Stages and Weathering Potential Age Ranges in Years for Release of Heating Oil

Kaplan Stage	Weathering Regime	Moderate Soil – Age Range
1	Abundant n-alkanes	0 - 4
2	Light n-akanes removed, benzene & toluene removed	4-8
3	Middle range n-alkanes removed, ethylbenzene and xylenes removed	8-12
4	More than 50% n-alkanes removed	12 - 16
5	More than 90% n-alkanes removed, alkylbenzenes and alkylcyclohexanes begin to degrade	16 - 20
6	All n-alkanes removed, alkylbenzenes and alkylcyclohexanes removed by 50%	20 – 24
7	Isoprenoid removal significant	> 24

Age of sludge

- If greater than 10 years old we should observe the following
- 50-90% depletion of n-alkanes
- Significant depletion of alkylbenzenes and alkylcyclohexanes
- Reference: Oudijk (2009)

Ion 85.00 20+ year middle distillate

Ion 85.00 2-year old heating oil

Abundance

Ion 85.00 sludge

Time-->

Ion 105.00 20+ year old middle distillate

Summary

- Based upon the C/L method as well as depletion of organic chemical classes we could conclude that sludge represents fuel that is less than 5-6 years old
- This is bad news for our client
- BUT WAIT!
- Are these fuels different?
- What can we attribute the difference to?
- Will this help assign an age to the sludge and vindicate our client?

PAH Distribution

PAH Compounds	2-year fuel	sludge
Alkylated naphthalenes/alkylated phenanthrenes	10.5	2.3
Alkylated phenanthrenes/Total PAHs	0.08	0.27
Alkylated Dibenzothiophenes /Total PAHs	1.7	6.1
Percent 3-ring PAHs	5.8	7.4
Percent 4-ring PAHs	0.4	3.3
Percent 5-6 ring PAHs	0.1	0.1

Ratio	2-year heating fuel	Sludge	Conclusion
Sesquiterpanes			
DR-SES1/SES2	2.230	1.943	Match
DR-SES3/SES5	0.306	0.376	No Match
DR-SES4/SES6	0.957	0.792	No Match
DR-SES5/SES10	0.915	1.198	No Match
DR-SES10/SES10+5	0.522	0.455	Match
Alkanes & Isoprenoids			
n-C17/pristane	1.95	1.85	Match
n-C18/phytane	2.04	1.94	Match
Pristane/phytane	1.42	1.19	No Match

PAHs	2-year heating fuel	Sludge	Conclusion
DR-4MeDBT/1-MeDBT	2.816	6.424	No Match
DR-2MeP/1-MeP	1.966	1.86	Match
DR-2MePyr/4-MePyr	0.849	1.212	No Match
DR-1MePyr/4-MePyr	0.628	0.79	No Match
DR-C2DBT/C2-P	0.179	0.228	No Match
DR-C3DBT/C3P	0.292	0.298	Match
BaA/Chry	1.490	0.400	No Match
BeP/Bap	0.882	0.754	No Match
Total Matches			6/16

Sesquiterpanes	2-yr Fuel	Sludge	Difference	Critical Difference	Conclusion
DR-SES1/SES2	2.230	1.943	0.287	0.292	Match
DR-SES3/SES5	0.306	0.376	0.070	0.048	No Match

Difference = absolute difference between pair of ratios Critical Difference = mean between ratios * repeatability limit (14%) Conclusions = Match if difference < than critical difference Conclusions = No Match if difference > critical difference

Reference: Hansen et al (2007)

- The 2-year old fuel is distinctly different from the sludge sample
- This suggests that the heating fuels are from different sources (crude stocks)

Elemental Analysis

Element	2-year heating fuel mg/kg	Sludge mg/kg
Aluminum	<10	4830
Cadmium	<0.50	14
Chromium	<0.50	53.1
Copper	<1.0	133
Iron	<100	219,000
Nickle	<2.0	97.9
Lead	<5.0	429
Tin	<5.0	16
Zinc	1.24	846
Sulfur	1300	3600

- Client suggests that sludge from a storage tank represents heating fuel that is 30+ years old
- GC/FID analysis followed by determination of n-C17/pristane, n-C18/phytane as well as pristane/phytane did not suggest a weathered sample
- This was supported by studying profiles of nalkanes, alkylcycloalkanes, and alkylbenenes which revealed no degradation
- May be explained by the confined space (old storage tank) with minimal opportunity for weathering

- Determination of specific hydrocarbon biomarker ratios (sesquiterpanes, alkanes, isoprenoids, and PAHs) followed by a critical difference analysis revealed that the 2-year old fuel oil and sludge were distinctly different (6/16 matches)
- Comparison of the PAH profiles revealed elevated levels of alkylated naphthalenes, phenanthrenes, fluorenes, dibenzothiophenes and chrysenes in the sludge relative to a 2-year old heating oil

- Higher concentrations of alkylated PAHs and alkylated dibenzothiophenes associated with older fuels.
- Sulfur concentration in the sludge was 3600 mg/kg vs 1300 mg/kg observed for the 2-year old heating fuel
- Comparison to Canadian national averages for home heating fuel suggests sludge dates back to pre-1995 and according to U.S. national standards pre-1987

 The elevated levels of metals, especially iron (219,000 mg/kg) as well as aluminum, zinc, lead, copper, chromium and cadmium provide additional evidence that the sludge represented fuel in contact with a metal tank for many years, likely decades.

