Enhancement of LNAPL in situ recovery using soil washing with a surfactant solution

THOMAS ROBERT, PHD student Dr. Richard Martel, Research Supervisor Dr. René Lefebvre, Research Co-Supervisor Dr. Uta Gabriel Research Professional

-10nmo

Centre - Eau Terre Environnement

By:

Presentation Objectives

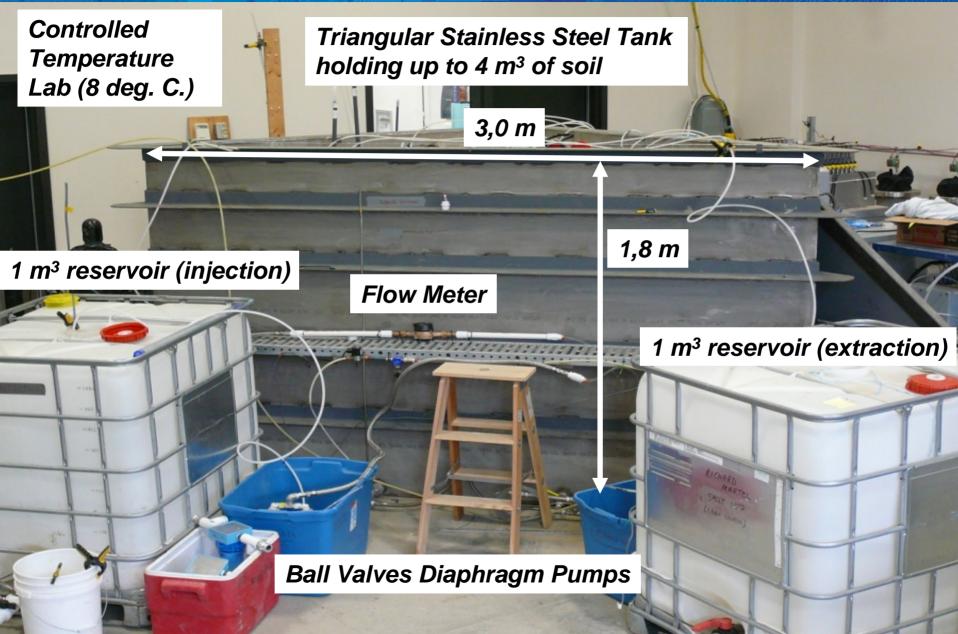
- (1) Present the facilities for Site Remediation at the INRS-ETE laboratory in Quebec City;
- (2) Present our current research project: a <u>3D</u> lab-scale soil and groundwater remediation test using a technology train, including both Slurping and SEAR.

Project Background – In Situ Limitations

- Successful GW remediation requires almost <u>total</u> <u>LNAPL mass reduction</u> from source zone ;
- In situ technologies have mass-reduction limitations :
 - Slurping: leaves residual LNAPL trapped in the saturated zone by capillary forces;
 - SEAR: requires large volumes of solutions and effluent treatment is not economically interesting.

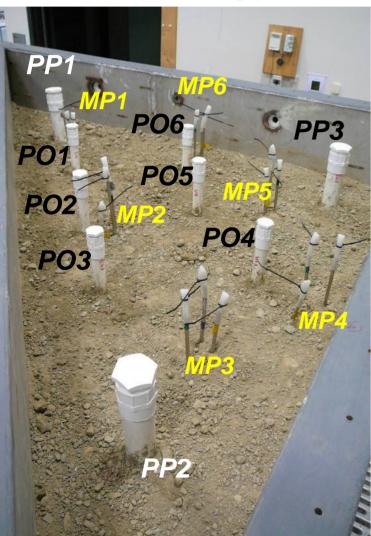
Project Background – Recovery Mechanisms

- SEAR targets 2 LNAPL recovery mechanisms:
 - 1) LNAPL mobilisation
 - Reduction in capillary forces;
 - Increase in oil relative permeability;
 - 2) LNAPL increased dissolution in water
 - Micelle formation above the critical micelle concentration.

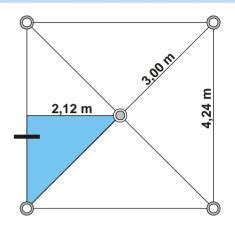

Project Background – 3D Lab. Experiments

- 1D experiments are usually promising but what is the performance in a 3D environment representing <u>field</u> <u>conditions</u>?
 - Actual field-like injection/extraction pattern with RADIAL FLOW;
 - Analysis of 3D phenomena:
 - Sweep efficiency (contact) and preferential flow effects on recovery
 - Dispersion in the soil and dilution at extraction wells
 - Field-characterisation tests can be performed inside the 3D model and results can be compared with actual field values:
 - Slug tests
 - Inter-well tracer tests

KEY PARAMETER FOR IN SITU SUCCESS!


Centre - Eau Terre Environnement

Methodology- Laboratory setup


1/8 of a 5-spot pattern

- 1 Injection well: PP1
- 1 Extraction well: PP2
- 7 Observation wells: PO1 to PO6, PP3

6 Three-levels sampling wells: MP1 to MP6

4 Pressure probes PP1, PO1, PO3, PO5

4 Salinity probes PO2, PO6, PP3, PP2

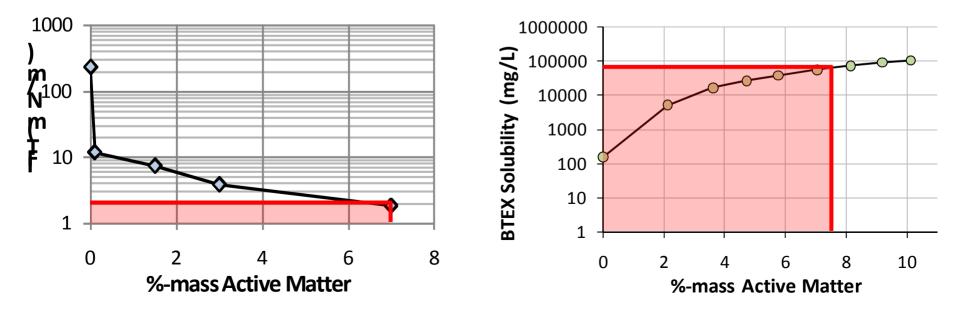
Centre - Eau Terre Environnement

INRS Université d'avant-garde

Slurping unit

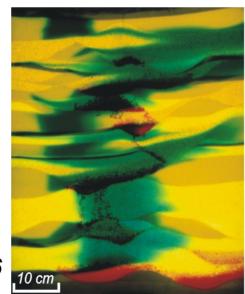
Water deaeration towers

Data acquisition and operation control



Methodology- Washing solution selection

- Confidential blend (*Ionic surfactant* + Co-solvent + Polymer + NaCl)
- Injection concentration is over 60 X CMC (*Enhance LNAPL solubility*)
- Sand column experiments : 94%-mass removal of weathered gasoline after a 1,8 PV flush (both mobilisation and solubilisation observed)
- Potential impact on IFT and on BTEX dissolution:



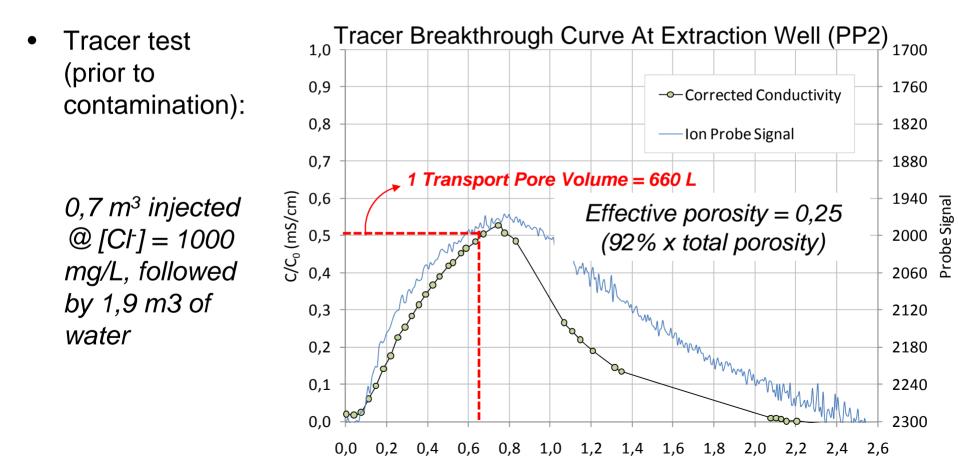
Methodology- Washing solution selection

- Co-solvent (ex. alcohol):
 - Increases surfactant solubility in solution ;
 - Contributes to enhanced oil solubilisation ;
 - Contributes to *IFT* reduction.
- Shear-thinning polymer:
 - Stabilize the sweeping front (favourable mobility ratio) ;
 - Increase viscous forces.

Example of mobility control from a previous project (DNAPL) *From Robert et al. 2006*

Methodology- Overall experiment

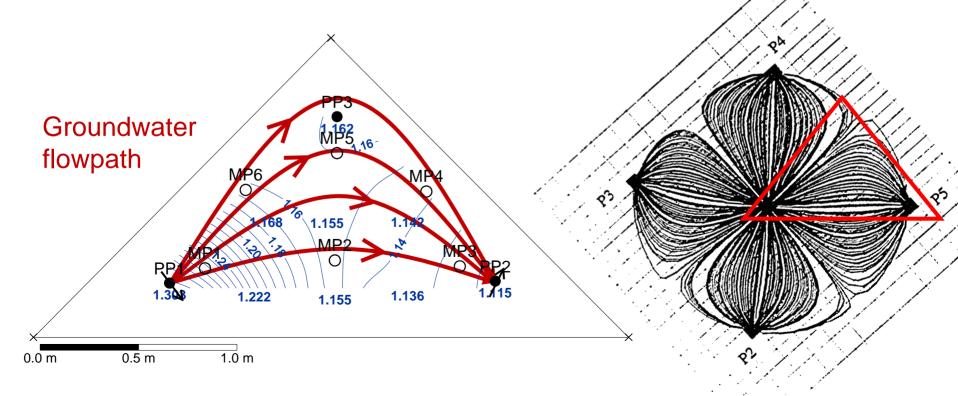
- 1. Water saturation;
- 2. Water flood for tank conditioning (pH, EC, ORP, T)
- 3. Tank drainage (down to 0,5 m elevation)
- 4. Model oil injection through all wells present in the tank (up to 1 m elevation)
- 5. Water flood in order to reach an equilibrium: Remove excess oil in tank
- 6. Remediation :
 - Slurping
 - Salinity conditionning
 - Micellar flood
 - Micellar+ polymer flood
 - Polymer Flood
- 7. ISCO (to be planned)


Results- Sand Tank Physical Characteristics

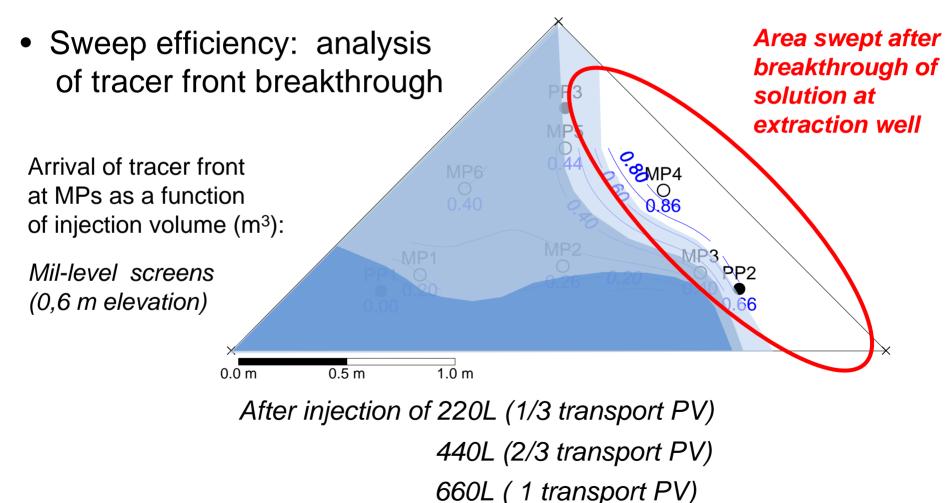
Parameter	Unit	Value	
Soil Surface Area	m ²	2,3	
Soil Thickness	m	1,5	
Volume of Soil	m ³	3,3	
Mass of Soil	Kg	6540	
Dry Soil Density	Kg/m ³	1980	
Total Soil Porosity	-	0,27	
Pore Volume	L/saturated m	620	
d ₅₀	1,5 mm (medium sand)		
d ₁₀	0,1 mm		
Mineralogy	Mainly Quartz (dominant) + Calcite		

Results- Saturated Zone Properties

• Soil hydraulic conductivity: 2×10⁻⁵ m/s to 8×10⁻⁵ m/s (slug tests)



Volume of solution injected (m³)


Results- Saturated Zone Properties

 Water elevations and piezometric map under stable conditions (steady-state, Q_{injection} = Q_{extraction}, dh = 0,2 m)

Results- Saturated Zone Properties

Results- Unsaturated Zone Properties

Volumetric water content Air profile: 1,4 1,2 Elevation from surface (m) Aquifer solids 1 0,8 77L **Injected LNAPL** 0,6 displaces air in larger pores 0,4 Water contained in soil pores 0,2 0

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40

Volumetric Water Content

Results- LNAPL recovery by Slurping

• Operation parameters:

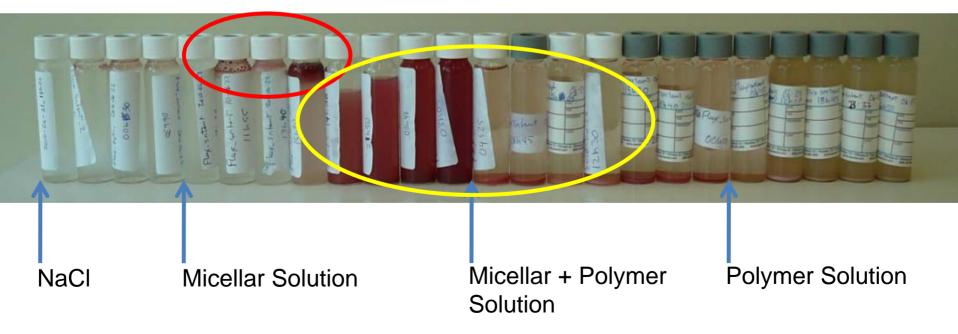
Parameter	Unit	Value	
Vacuum Pressure at Extraction Well	(cm water)	-25	
Vacuum Pressure at Pump	(inch Hg)	-22	
Air Extraction Flow Rate	(m3/hr)	9,3	
	(scfm)	5,5	
Total Operation Time	(hrs)	4 X 8 hrs	
Volume of Water Injected During Operation	(L)	670 (1 transport VP)	

Results- LNAPL recovery by Slurping

• Slurping performance assessment:

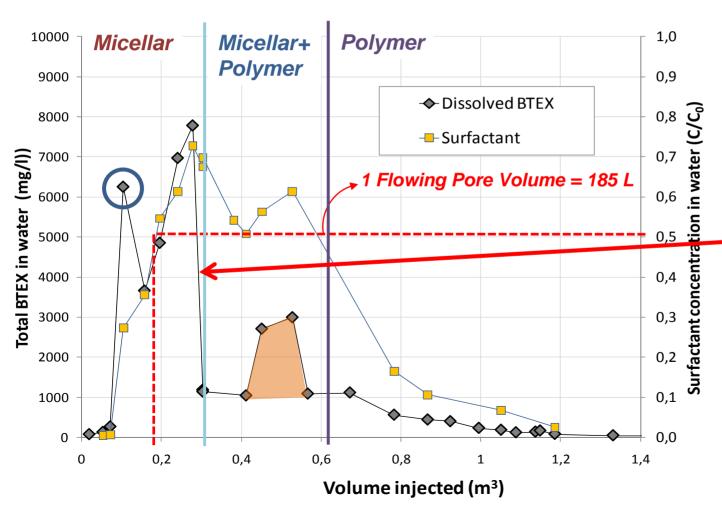
Parameter		Unit	Value
LNAPL Volume in Soil	Initial	(L)	44
	Final	(L)	27
Total Volume Removed		(L)	17 (39% reduction)
LNAPL thickness in wells	Initial	(cm)	24
	Final	(cm)	1,6
Oil Saturation	Initial	(%)	14
	Final	(%)	9

Results- SEAR


• Operation parameters:

Parameter		Unit	Value
Injection Rate		(L/min)	0,24
Volume N N P P	Water + NaCl	(L)	560
	Micellar Solution	(L)	310
	Micellar + Polymer Solution	(L)	310
	Polymer Solution	(L)	760
	Total	(L)	1940
		(days)	6

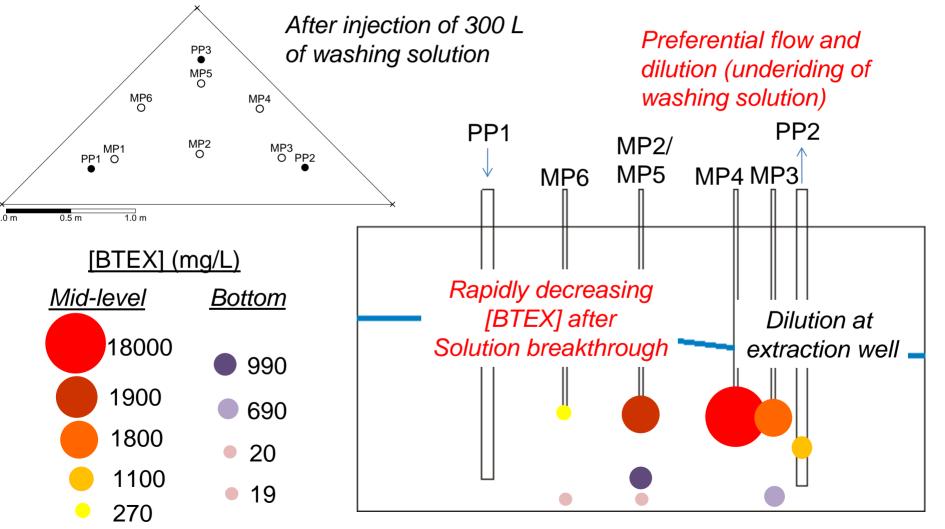
Results- SEAR

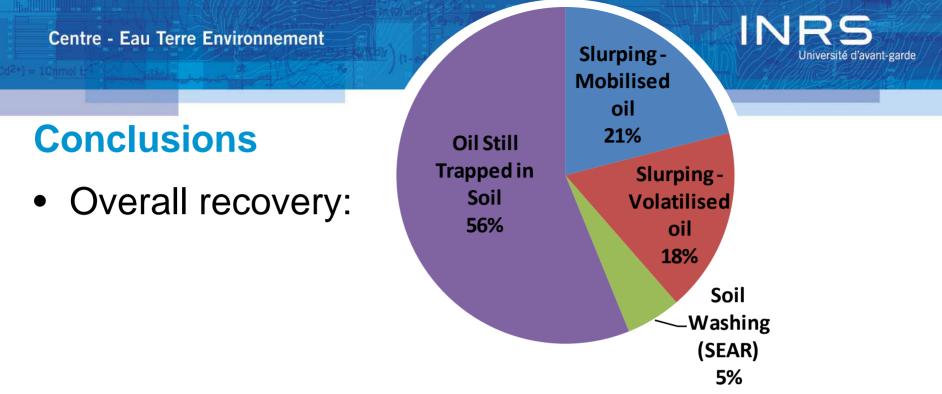

- Samples collected at extraction pump (PP2)
- LNAPL recovery mechanisms observed at extraction well (PP2):
 - <u>Some mobilization</u> ahead of the surfactant solution front ;
 - Enhanced solubilization is the main recovery mechanism.

Results-SEAR

• BTEX and surfactant concentration at extraction well (PP2):

Mobilisation


Eff. Porosity = 0,11 (40% x total porosity): Oil saturation caused A 50% decrease in eff. porosity


[BTEX] drops rapidly behind the Micellar Solution Front: Preferential flow and dilution (underiding of washing solution)

Impact of polymerinduced mobility control

Results- SEAR: [BTEX] inside the tank

- Impact of remediation on soil concentrations:
 - Bioslurping: 3500 mg/kg reduction
 - Soil washing: 350 mg/kg reduction
- No significant impact on dissolved flux exiting the treatment area

Conclusions - SEAR

- Seep efficiency was not uniform inside the tank:
 - Effective porosity globally dropped by 50% after oil injection;
 - Dissolution not uniform behind micellar solution front;
 - Preferential flow and under-rinding is suspected (3D effects).
- A total of 2 kg of BTEX was removed by dissolution
 - Equivalent to a 350 mg/kg BTEX reduction in soils

Conclusions

- Pros of laboratory tests in large sand tanks:
 - True test prior to field since 3D effects have a huge impact on remediation performance
 - 1D test (column experiment) overestimated the performance
 - Experimental control over data
 - Mass balance was acheived
 - Reduced costs vs. field pilot study, <u>allows optimisation</u> process
- <u>Room for improvement</u> other tank tests are planned!

Thank you!

HINRS Université d'avant-garde

Paction publique et des rapports sociau

194<u>4-1</u>968