

Public Works and Government Services

Canada

Travaux publics et Services gouvernementaux Canada

global environmental solutions

DND YARROWS SHIPYARD REMEDIATION

CHALLENGES IN BARRIER WALL CONSTRUCTION AND SITE REMEDIATION ON ESQUIMALT HARBOUR

CFB Esquimalt Victoria, British Columbia

National Défense Defence nationale

National Défense Defence nationale

PROJECT SCOPE

- Construction of three laydown areas for site material.
- Construction of a barrier wall around the perimeter of the site
- Remediation of contaminated fill below the historic 1924 shoreline.
- Site restoration.

Public Works and Government Services Travaux publics et Services gouvernementaux Canada

Canada

National Défense Defence nationale


CFB ESQUIMALT PROPERTIES, VICTORIA, BC

Yarrows History

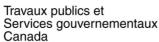
- Operational shipyard from 1893-1994
- Peak operations during WW2, 4300 workers
- Many HMC ships (22), Liberty Ships, and BC Ferries were built at the Yarrows Shipyards
- Insolvency in 1994; in 1996 2 acres 'sold' to Town of Esquimalt (\$1); and 12 acres to DND (\$1), with known environmental liability of \$6-8 million (soil and sediment contamination)
- Acquisition was "A 'once in a lifetime' opportunity to link Naden with the Dockyard " (VAdm P.W. Cairns, Commander Maritime Command, 1992).

Canada

Travaux publics et Services gouvernementaux Canada

National Défense Defence nationale

DND YARROWS LOCATION



Défense nationale

Yarrows History

- Risk management strategy employed from 1996-2006
- In 2002 the surficial debris was removed from the site and it was restored as a materials laydown and storage area.
- In 2006, high concentrations of hydrocarbons were detected in 4 monitoring wells and visible Bunker C was noted in one.
- Site was re-evaluated and determined that remediation was required (Class 1 Site)
- Funding for remediation was secured through Federal Contaminated Sites Action Plan program, with SRB oversight
- Remediation and site restoration began in 2008 and was completed in 2009.
- Yarrows Remediation Project is a true FCSAP success story

al Défense e nationale

YARROWS SHIPYARD HISTORY

Yarrows Shipyard- Circa 1921

National Défense Defence nationale

nto Cove es being discharged by Yarrows Ltd.

Yarrows Shipyard- Circa 1960's

al Défense ce nationale

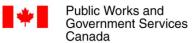
YARROWS SHIPYARD HISTORY

Yarrows Shipyard- Circa 1979

National Défense Defence nationale

DND YARROWS LOCATION

al Défense e nationale


CONTAMINATION ISSUES

- The purpose of the remedial program was to remove all impacted fill placed below the historic 1924 shoreline.
- Based on a number of historical investigations the following volumes of material were identified for removal from the site:

Volume	55,000 m
Total Estimated	39,000 m ³
hydrocarbons	
metals and	
Hazardous Waste	
Suspected	3,200 m ³
hydrocarbon	
metals and	
Industrial level	8,200 m ³
material	
Uncharacterized	10,500 m ³
gravel	
Clean sand and	8,800 m ³
Boulders	0,000
Rip Rap and	3,800 m ³
Wood Waste	1,500 m ³
Concrete	3,000 m ³

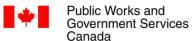
National Defence

Défense nationale

YARROWS PROJECT AREA

National Defence

National Défense Defence nationale


LAYDOWN AREAS - YARROWS

LAYDOWN AREA - YEW POINT

VTUM

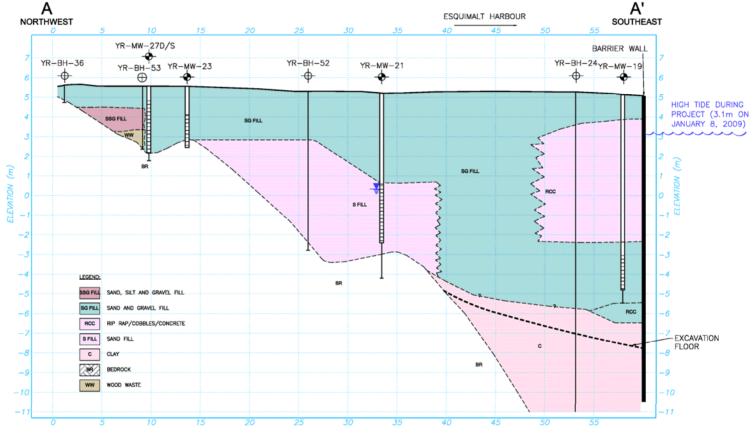
MURRAY

*

National Défense Defence nationale

National Défense Defence nationale

LAYDOWN AREA – WORK POINT



Défense nationale

SITE STRATIGRAPHY

l Défense e nationale

BARRIER WALL CONSTRUCTION

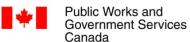
- The barrier wall was constructed using two different methodologies:
 - 1. Bentonite Slurry Wall was used in areas where bedrock was closer to the ground surface.
 - 2. Secant Pile Wall was used in deeper excavation sections.
- Prior to wall construction the top 3 m of fill and concrete was removed to minimize the constructed wall depth.

National Défense Defence nationale

BENTONITE SLURRY WALL CONSTRUCTION

National Défense Defence nationale

BENTONITE SLURRY WALL CONSTRUCTION


National Défense Defence nationale

SECANT PILE WALL

National Dé Defence nat

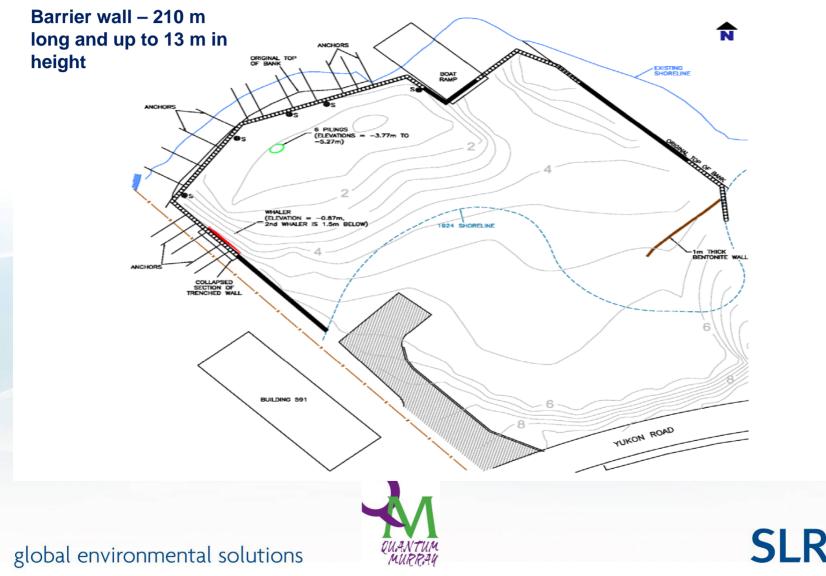
Défense nationale

Canada

Public Works and Government Services Travaux publics et Services gouvernementaux Canada


National Défense Defence nationale

ROCK ANCHORS



National Défense Defence nationale

WALL CONSTRUCTION DETAILS

National Défense Defence nationale

SITE REMEDIATION

National Défense Defence nationale

SITE REMEDIATION – SLOT CUT

National Défense Defence nationale

SITE REMEDIATION


l Défense e nationale

SUMMARY OF REMEDIATION

- Approximately 90,000 tonnes of material was removed from the site.
- Impacted fill consisted of soil mixed with metal debris, slag, Bunker C, creosoted piles and a minor amount of asbestos.
- Approximately 60,000 tonnes of material was disposed of at permitted facilities.
- Approximately 3,000 tonnes of Hazardous Waste metals and hydrocarbons were removed from the site.
- 27,000 tonnes of coarse rock was screened from contaminated fill to reduce the disposal cost. The coarse rock was re-used on site to reduce backfill cost.

National Defence na

Défense nationale

CONTAMINATED FILL

Public Works and Government Services Travaux publics et Services gouvernementaux Canada

National Défense Defence nationale

CONTAMINATED FILL

MURRAG

Canada

National Défense Defence nationale

CONTAMINATED FILL

global environmental solutions

National

*

Défense

nationale

BENTONITE WALL CONSTRUCTION

National Défense Defence nationale

PROJECT CHALLENGES

- 1. Subsurface Variability
- 2. Stockpile Handling Space and Laboratory Cost
- 3. Quality of Imported Fill Material
- 4. Regulatory Changes Cost Implications
- 5. Weather Effects

National Défense Defence nationale

SUBSURFACE VARIABILITY

- A stratigraphic model was developed based on the results from seven historic investigations.
- Coarse rock and/or rip rap was identified in zones along the perimeter of the excavation.

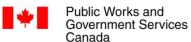
Travaux publics et Government Services Services gouvernementaux Canada

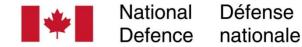
Public Works and

Canada

Défense Defence nationale

SUBSURFACE VARIABILITY




 Thick zones of large rock (1.5 m to 2.5 m) was interpreted as bedrock in historic investigations.

IMPLICATIONS

- Barrier wall construction methodology was altered
- Redesign of wall sections to reflect deeper excavation requirements in some areas
- Slower drilling for pile installation
- Wall failure and repair

National Défense Defence nationale

STRATIGRAPHIC CHANGE – WALL FAILURE

QUANTUN MURRA

National Défense Defence nationale

STRATIGRAPHIC CHANGE - IMPLICATIONS

National Défense Defence nationale

STOCKPILE MANAGEMENT AREA

- During periods where excavation was conducted on a 24 hour/day basis there was insufficient room for soil turnover.
- Result was increased laboratory cost to meet required turn around times.

National Défense Defence nationale

IMPORTED FILL MATERIAL QUALITY

- Imported native backfill material did not meet federal guidelines.
- The backfill material needed to be screened to remove finer material so it could be used on site as backfill.

l Défense e nationale

REGULATORY CHANGES

- As of January 1, 2009 the Province of BC enacted new sodium and chloride standards.
- The regulatory change did not impact remedial targets.
- This impacted the offsite disposal cost of material as much of the material was reclassified as Commercial level for offsite disposal.

National Défense Defence nationale

WEATHER EFFECTS

- A large storm event occurred during the project that was atypical of Victoria weather.
 - There was three weeks of record snowfall and high winds that halted construction.

Défense nationale

CONCLUSIONS

- Successful remediation of over 90,000 tonnes of impacted material.
- Bentonite and Secant Pile wall performed as designed.
- When barrier walls are going to be constructed it is imperative to completely understand stratigraphy along the alignment.
- Plan for delays and unknowns. Can have large cost and time implications.

National Défense Defence nationale

CONCLUSIONS

- Important to have a good QA/QC program in place.
 - On sites requiring backfilling understand that:
 - Backfill from native quarries may not meet federal guidelines.
 - Always establish detailed testing program for all materials leaving and coming onto the site regardless of origin.
- Have a good project risk assessment process in place to identify delays and find solutions.
- Have a strong project team that work together and has a excellent communication structure.

Public Works and Government Services

Canada

Travaux publics et Services gouvernementaux Canada

National Défense Defence nationale

