

global environmental solutions

Installation and Start-Up of In-Situ Air Sparge / Soil Vapour Extraction (Biosparging/Bioventing) Remediation System Beneath Mall

Takako Matsueda, P.Eng.

SLR Consulting (Canada) Ltd.

Outline

- Site Description and History
- Previous Work by Others
- SLR Remediation Plan
- Delineation challenges/logistics
- System Installation challenges/logistics
- System Start-Up challenges
- System O&M

Site Description

- The site is a shopping mall in the Lower Mainland (commercial)
- Burrard Inlet to south of site (marine aquatic receptor)
- Creek to east of site (freshwater aquatic receptor)
- Applicable BC CSR standards:
 - Soil: CL
 - Groundwater: AWM and AWF

Site History

Previous Work By Others

- IAS/SVE remediation system installed under building and operated from 1997 to 2008
- Vertical and horizontal extent of plume in soil and groundwater was not delineated
- Soil vapour extraction lines were not deep enough
- Some air sparge wells did not target optimal depth
- Pressures, flow rates and vacuum at sparge compressors and extraction blower too low
- Some success in reducing petroleum hydrocarbon concentrations in groundwater but was not able to significantly reduce the overall plume size

SLR Remediation Plan

- Delineate extent of soil and groundwater contamination in both areas
- Assess soil vapour (inside building and parking lot)
- Parking Lot contaminant sources relatively accessible, excavate
- Beneath Building contaminant sources more difficult to access, install IAS/SVE (biosparging/bioventing) system (target to remediate to numerical standards)
- Assess baseline groundwater quality

Delineation Drilling - challenges/logistics

 For north end of plume beneath building used a mini odex rig (inside wine shop)

Parking Lot - Excavation

 Excavated approximately 1,000 tonnes of soil, dewatered excavation, collected confirmatory samples

Parking Lot - Excavation

- Backfilled, paved, painted parking stall lines
- Installed and sampled post remedial groundwater and soil vapour wells
- Confirmed this area remediated

System Installation - Proposed

Soil Vapour Extraction/Bioventing Line Installation - challenges/logistics

- Directional drilling to install 4 horizontal lines under building
- Depth critical (above the water table but still in sand and gravel below a silt and sand layer)

Soil Vapour Extraction/Bioventing Line Installation

Soil Vapour Extraction/Bioventing Line Installation

Soil Vapour Extraction/Bioventing Line Installation

Sparge Well Installation

- 10 new sparge wells installed:
 - 7 vertical
 - 3 angled under building (approximately 35 degrees from vertical)
- 9 of existing sparge wells also reused for new system

Sparge Well Installation - challenges/logistics

Sparge Well Installation - challenges/logistics

Remediation System Equipment

- sparge compressor (rotary claw compressor with 40 HP, 208-230/460 V/3P motor) = 300 scfm at 28 psig
- SVE/biovent blower (5L rotary lobe blower with 15 HP, 230/460V/3P motor) = 400 scfm at 80 inches H₂O
- heat exchanger
- liquid / vapour separator
- water holding tank
- carbon vessels
- fans, instrumentation, gauges etc.
- control panel, telemetry

SPARGE COMPRESSOR

100

SVE BLOWER

CARBON VESSELS

HOLDING TANK

LIQUID / VAPOUR SEPARATOR

Remediation System After Installation

System Start-Up - challenges

- Primary:
 - elevated sound levels (complaint from tenant)
- Minor Issues:
 - required replacement of PVC piping in some areas of steel piping due to high temperatures
 - pressure build up in carbon vessels
 - water build up in carbon vessels

Elevated Sound Levels

- Sought advice from equipment vendor, contractor, colleagues
- Hired acoustics consultants to assess sound levels at various locations around equipment and provide recommendations for reducing sound levels
 - Sound levels measured at various locations in proximity to the equipment ranged from 50 dbs to 78 dbs
- Local bylaw sound level:
 - Activity Zone during the day = 60 dbs
 - Activity Zone during the night = 55 dbs

Managing and Reducing Sound Levels

- lined the inside of the heat exchanger and equipment enclosure with liner board/insulation
- replaced latticed area with solid plywood
- placed rubber foam on stack covers
- wrapped piping with insulation/added foam
- covered inlet and outlet of heat exchanger with custom made downward facing covers
- added a silencer and dampener at the outlet of compressor (~15 db reduction each)

Managing and Reducing Sound Levels

INSTALL SILENCER -HERE

INSTALL DAMPENER ~ HERE

sparge global environmental solutions **COMPRESSOR**

Managing and **Reducing Sound** Levels

INSTALLED SILENCER HERE

INSTALLED DAMPENER HERE

SPARGE global environmental solutions **COMPRESSOR**

Managing and Reducing Sound Levels

- received authorization from client and property manager to run system
- equipment no longer audible inside building
- no more complaints from tenants
- lower frequency sound

System O&M/Optimization & Effectiveness

- Baseline groundwater and subslab vapour sampling completed (summer and winter)
- Regular groundwater and subslab vapour sampling to assess changes in groundwater quality/system effectiveness (approximately every 3 months)
- Regular monitoring of system (approx. every 2 weeks):
 - Sparge compressor pressure, temperature, flow rate
 - Extraction blower vacuum, pressure, temperature, vapour levels (Gastech), velocity

Thanks:

- SLR Staff:
 - Kevin Pendreigh senior review
 - Steve Hammer design
 - Stef Lee, Geoff Rousseau, Joey Tsao, Mark White fieldwork
- Directional Mining and Drilling
- Quantum Murray
- Maple Leaf Equipment

global environmental solutions

Thank You

SLR Consulting (Canada) Ltd.

Prepared for RemTech 2010