Successful full-scale deployments of advanced PGPR enhanced phytoremediation systems (PEPS) for decontamination of petroleum and salt impacted soils.

Bruce Greenberg, Xiao-Dong Huang, Karen Gerhardt, Xiao-Ming Yu, Scott Liddycoat, Xiabo Lu, Julie Nykamp, Brianne McCallum, Greg MacNeill, Peter Mosley, Jolanta Gurska, Nicole Knezevich, Han Zhong & Perry Gerwing

STRATEGIES INC.

<u>Partners:</u> Talisman; PennWest; Canadian Forest Oil; Devon; Baytex; ConocoPhillips; Solaction; Shell; Seaway Energy Services; Questerre Beaver River; Maxxam; Cenovus; Imperial Oil; URS; NorthWind; SNC Lavalin; MWH; NSERC

Outline

- 1. Advantages of phytoremediation
- 2. Overview of our phytoremediation system
- Field tests of our phytoremediation system for petroleum and salt remediation

Examples of Remediation Methods

- Dig and dump Any contaminant type \$100-500/m³
- Soil incineration On or off site Organic contamination -\$200-600/m³
- Chemical extraction Any type of contamination \$250/m³
- Electrokinetic separation Metals/Salts \$200/m³
- Soil flushing/fracturing Any contaminant type \$250/m³
- Land farming Natural attenuation Small organics -\$50/m³
- Bioremediation Organics \$100/m³
- Phytoremediation Any contaminant type \$25-50/m³

Process of Phytoremediation

- Volatilization
- Phytodegradation
- Chelation/compartment in leaves

- Salt

- Translocation: root symplast→ xylem
- Chelation/compartment in roots
- Plant uptake soil→root
- Rhizosphere Processes
- Bioavailability particle → water

Advantages of Phytoremediation

- 1. Improves the quality of soil
- 2. It is driven by solar energy and suitable to most regions and climates
- 3. It is cost effective and technically feasible
- Plants provide sufficient biomass for rapid remediation; promote high rhizosphere activity
- 5. Restoration in a reasonable time frame 2 to 3 years
- 6. Can be used effectively at remote sites
- Effective for remediation of PHC and salt relevant to the energy industry

Development, Proof, and Application of PGPR Enhanced Phytoremediation Systems (PEPS)

Over 10 years of research with full-scale field studies at each stage of development and application

- **1. PHC:** sites in AB, BC, QC, and ON (2004-10)
- 2. Gas station: site fully remediated in 1 summer (2007)
- **3. Salt:** sites in SK, AB and NWT (2007-10)

Description of the PGPR Enhanced Phytoremediation System (PEPS)

- Physical soilTill the soil: exposure to sunlight and airtreatment:Exposure to sunlight photooxidizes contaminants
- **Bioremediation:** Inoculation of PAH/TPH degrading bacteria (generally skipped in the field \rightarrow already present)
- Phytoremediation: Growth of plants with PGPR
- •<u>PGPR:</u> Plant growth promoting rhizobacteria.
- •Prevent the synthesis of stress ethylene.
- •<u>PGPR</u> are applied to the seeds prior to sowing \rightarrow NOT Bioaugmentation
- •Grass species used generally
- •Effect depth of remediation ~ 0.5 m

Interaction of a PGPR Containing ACC Deaminase with a Plant Seed or Root

Plant growth promoting rhizobacteria (PGPR)

Natural, non-pathogenic strains of PGPR (usually *Pseudomonads*)

We have isolated PGPRs from ON, AB, SK and the NWT

PGPR are applied to seeds prior to planting

Research and Development of the PEPS for PHC Remediation

1. Sarnia, ON – land farm – 4 year study

Oil sludge – PHC contaminated soil (15% w/w – 60% F3 (C16-C34), 30% F4 (C34 – C50)

- 2. Turner Valley, AB 3 year study
- 3. Hinton, AB 2 year study

Sarnia, ON – Land Farm

- Planted barley/fescue/ryegrass
- Plants were treated with PGPR (UW3 and UW4) using a mechanical seed treater
- PHC remediation from:
 - 15% 3% in 4 years with PEPS
 - 15% 8% in 4 years for plants w/o PGPR
 - 15% 11% in 4 years w/o plants

Conclusions on Development of the PEPS

- 100% increase in plant biomass due to PGPR, root growth to 50 cm below ground level
- 30 to 40% remediation per year with PEPS; 100% faster than plants without PGPR
- Rhizosphere microbes (esp. PHC degraders) elevated 10 to 100 fold with the PEPS - microbes and plants consume PHC
- Very low ¹⁴C detected in soil microbial fatty acids Carbon came from PHC metabolism (PHC has no ¹⁴C)
- Very low ¹⁴C in CO₂ that evolves from soil PHC has been mineralized to CO₂
- No PHC detected in plant tissue as it disappears from the soil
- CCME PHC analytical method used effectively to show extent of remediation

Phytoremediation of PHC

(A) Bioavailability of PHC

(B) General processes affecting rhizoremediation

(C) Microbial aerobic PHC degradation – rhizosphere supported by plants

(D) Possible microbial oxygenation pathway of PHC to form a fatty acid

Application of PEPS for PHC Remediation – 1st Generation Full Scale Sites for Proof of Concept (2007- 09)

All sites planted with oats, tall fescue and ryegrass treated with PGPR – All sites met applicable criteria

- Hinton 2, AB Complete remediation in 2 years Diesel invert drilling waste
- Edson, AB Complete remediation in 2 years Diesel invert drilling waste
- Peace River, AB Complete remediation in 3 years Flare pit material
- 4. Steinbach, MB Complete remediation in 1 year Gas station site
- 5. Quebec City, QC Tier 1 criteria met in one year

Edson, AB – Site and Sampling Map (2008) Soil Impact – PHC (Diesel Invert; 85% F3)

Edson, AB – Beginning and Mid-Season (2008) Soil Impact – PHC (Diesel Invert; 85% F3)

Edson, AB – PHC Remediation (2007-08) Soil Impact – PHC (Diesel Invert; 85% F3)

In June 2007, 9 of 13 sampling points above Tier 1 criteria (F3 > 1300 mg/kg)

BIOTECHNOLOGY INC

Gravimetric Total PHC vs Analytical Lab F3

Edson, AB – PHC Remediation (2007-08) Soil Impact – PHC (Diesel Invert; 85% F3)

Sampling points

- Remediation goals were met
- •No points over Alberta Tier 1 criteria

Quebec City, QC – End of Season (2009) Soil Impact – PHC

Second Generation Full Scale Sites

- 1. Three sites near Dawson Creek, BC
- 2. One site near Swan Hills, AB
- 3. One site near Hinton, AB
- 4. One site near Edson, AB
- 5. One site near Red Earth Creek, AB
- 6. One site in Northern BC

All sites worked with very similar results All sites planted with tall fescue, ryegrass, and/or oats treated with PGPR.

Northern BC near NWT Border – Mid/End of Season (2010) Soil Impact – PHC (Diesel Invert)

Mid-Season

End of Season

WATCHLOD ENVIRONMENTA BOTCHNOLDEY BO

Northern BC – EPH Remediation (2010)

EPH_{C10-C19} Remediation (Maxxam)

- 6 out of 8 sampling points showed a decrease in EPH_{C10-C19} levels over two months
- All sampling points had EPH_{C10-C19} level above 1000 mg/kg criteria
- At the end of the season the average EPH_{C10-} C19 level decreased by 29%, from 3659 mg/kg in July to 2608 mg/kg in September

EPH_{C19-C32} Remediation (Maxxam)

- 6 out of 8 sampling points showed a decrease in EPH_{C19-C32} levels over two months
- Only 3 out of 9 sampling points had EPH_{C19-C32} level above 1000 mg/kg criteria in September
- At the end of the season the average EPH_{C19-C32}
 level decreased by 27%, from 1335 mg/kg in July to 979 mg/kg in September

Swan Hills, AB – End of Season (2009 – 10) Soil Impact – PHC

20 m

Swan Hills, AB – F2/F3 Results

F2 & F3 analysis performed by Maxxam. Method used: cold shake extraction, single silicacolumn clean-up

Phytoremediation Cost analysis for the Edson Site

- Collaborative project between Earthmaster Environmental and Waterloo Environmental Biotechnology
- Volume of impacted material 460 m³ of diesel invert drilling mud was originally spread over 1.07 ha
- 1.07 ha impacted to a depth of 0.3 m or <u>3,210 m³ of PHC impacted</u> material
- The costs for the entire project was: \$104,000 or \$<u>32.50/m</u>³
 - Includes all Earthmaster, WEBi and 3rd party costs
 - Does not include work required this spring for final site prep, final sampling/analysis and reporting ~\$10k
- Landfilling this material would have cost \$70/m³
 - Assumes a 2 h truck turnaround time
 - No backfill required if backfill was required the cost would rise to \$80/m³

Generic cost comparison: Phytoremediation vs. Landfilling

Landfilling

ALL COSTS EXCEPT FOR EXCAVATION	8000 m3			35,000 m3		
	2 Hr TAT	6 Hr TAT	10 Hr TAT	2 Hr TAT	6 Hr TAT	10 Hr TAT
TOTAL COST	\$621,450.00	\$1,031,450.00	\$1,441,450.00	\$2,730,000.00	\$4,480,000.00	\$6,300,000.00
TOTAL COST (less 10%)	na	na	na	\$2,457,000.00	\$4,032,000.00	\$5,670,000.00
TOTAL COST (\$/M ³)	\$77.68	\$128.93	\$180.18	\$70.20	\$115.20	\$162.00
TOTAL COST (\$/Tonne)	\$45.69	\$75.84	\$105.99	\$41.29	\$67.76	\$95.29

Assumptions: 1. 10% discount to landfill 35,000 m³ pile; 2. Contaminated soil already stockpiled; 3. 20 trucks/day are available for hauling paid at an hourly rate; 4. Disturbed area reclamation included; 5. Bulk Density = 1.7 g/cm³

Phytoremediation

ALL COSTS EXCEPT FOR EXCAVATION	Soil Volumes			
	8000 m ³	35,000 m ³	100,000 m ³	
TOTAL COST (\$/M ³)	\$51.28	\$32.16	\$25.55	
TOTAL COST (\$/Tonne)	\$30.16	\$18.92	\$15.03	
TREATMENT COST - EXCLUDES TOPSOIL REMOVAL FROM TREATMENT AREA				
TOTAL COST (\$/M ³)	\$47.00	\$28.25	\$24.18	
TOTAL COST (\$/Tonne)	\$27.65	\$16.62	\$14.22	
TREATMENT COST - IN-SITU TREATMENT - MINIMAL TREATMENT AREA PREPARATION				
TOTAL COST (\$/M ³)	\$38.90	\$20.90	\$17.03	
TOTAL COST (\$/Tonne)	\$22.88	\$12.29	\$10.02	

Assumptions:

- 1. 5% PHC contaminated soil
- 2. Some bench scale testing
- 3. Contaminated soil already stockpiled
- 4. Time to remediate 1 treatment layer = 4 years
- 5. Tier II toxicity testing to confirm remedial endpoint
- 6. Disturbed area reclamation included
- 7. Bulk Density = 1.7 g/cm^3

Conclusions for PHC Remediation

SUCCESS

 Achieved PHC remediation: 4 sites brought to closure, 6 second generation sites progressing well towards closure

PERFORMANCE PREDICTIONS FOR PEPS

- Fine grain soils F3 from 2000 to 10,000 mg/kg
 - In 2 to 4 years, will meet Alberta Tier 1 standards
- Fine grain soils F3 above 10,000 mg/kg
 - In 3 to 6 years, will meet Alberta Tier 1 or 2 standards
- Coarse grain soils F3 above 3000 mg/kg
 - Phytoremediation will significantly lower F3
 - Tier 2 approach may be required

<u>COST</u>

- Actual cost for the Edson site (3,400 m³) was \$33/m³
- Cost to landfill (landfill 1 h from site) would have been \$70/m³

Development of PEPS for Salt Impacted Sites

Plant responses to salinity

- Inhibited germination
- Decreased water uptake → Low water potential (drought)
- Unbalanced sodium/potassium ratios
- Inhibition of photosynthesis
- Increased reactive oxygen species (ROS)
- Increased ethylene production

Sites for Development of PEPS for Salt Remediation

- 1. Cannington Manor, SK
- 2. Alameda, SK
- 3. Kindersley, SK
- 4. Brazeau, AB
- 5. Norman Wells, NWT
- 6. Weyburn, SK (7 sites)
- 7. Provost, AB
- 8. Red Earth, AB

Lab Research Summary of PEPS for Salt Impacted Soils

- 50 to 100% increases in plant growth due to PGPR with root growth to 50 cm
- Plants can grow on soils with $EC_e \sim 25 \text{ dS/m}$
- ON, SK, and NWT PGPRs all worked well
- PGPRs protected against inhibition of photosynthesis and plant membrane damage
- Levels of salt up-take to plant foliage: 50 75 g NaCl/kg dry weight
- Remediation can be based on up take of salt into foliage
- Phytoremediation is feasible for soils with EC_e of 15 to 20 dS/m in about 5 years

Norman Wells, NWT – End of Season (2010) Soil Impact – Salt

Norman Wells, NWT – End of Season (2008) Soil Impact – Salt

Plants used: slender wheatgrass and red fescue No soil conditioning

Norman Wells, NWT – End of Season (2009) Soil Impact – Salt

Plants used: slender wheatgrass, ryegrass and red fescue Soil conditioned

Norman Wells, NWT – End of Season (2010)

Salt Remediation

Norman Wells, NWT – End of Season (2009) Soil Impact – Salt

	R				
	Plant Biomass (dry wt g/m ² ± SE)				Sugar State
	Year	Plot A	Plot B	Plot C	
	2009	300 ± 26	397 ± 50	623 ± 44	
No.70	2010	393 ± 16	592 ± 40	525 ± 20	

High salt plant material was mowed and removed from the site

Weyburn, SK – 1: End of Season (2010, Year 1) Soil Impact – Salt

Weyburn, SK – 2 of 7 sites: Soil Salinity (EC_e) Map (2010, Year 1) Soil Impact – Salt

Weyburn – 2, SK: End of Season (2010, Year 1) Soil Impact – Salt

Provost, AB: Mid-Season (2009, Year 1) Soil Impact – Salt

High salt hot spots and poor soil from pipeline construction: EC_e : 13-17 dS/m

Provost, AB: End of Season (2009, Year 1) Soil Impact – Salt

High salt spots have filled in with plants

- EC_e (2009): decreased from 13-17 to 4-12 dS/m
- EC_e (Spring 2010): all sampling points were below applicable targets
- Successful remediation was achieved in 1 year

Why Use Phytoremediation?

- It works for PHC and salt remediation.
- Remediation at all sites (> 20) successful.
- Costs of PHC and salt remediation will be similar.
- Unit cost drops as the volume of material increases.
- Phytoremediation costs (all in) < half the cost of landfilling.
- Liability is reduced, not transferred to a landfill.
- Costs are spread over more than one year (2 to 4 yrs).
- The price differential relative to landfilling increases when sites become more remote.
- Purchase of backfill not required. Soils are reused.
- Tier 2 approach if required only marginal cost increase.
- Green technology: Good PR and environmentally friendly.

Colleagues and Partners

- The people that do all the work
 - 💮 Karen Gerhardt
 - 😥 Jola Gurska
 - 😥 Xiao-Ming Yu
 - 💮 Wenxi Wang
 - 💮 Mark Lampi
 - 😥 Shan Shan Wu
 - 💮 Julie Nykamp
 - Micole Knezevich
 - 😨 Greg MacNeill
 - 😨 Xiaobo Lu
 - 💮 Scott Liddycoat
 - 💮 Han Zheng
 - 💮 Brianne McCallum
 - 👧 Jing Ma
 - 💮 Peter Mosley
 - 💮 Conrad Neufeld
 - 💮 Xiao-Dong Huang

- Collaborators
- Perry Gerwing, Earthmaster

Partners

- S Willets, O Mrklas, C Gordey, ConocoPhillips Canada
- B Moore, Devon
- G Millard, Shell
- J Budziak, Seaway
- P Coldham, Questerre Beaver River
- E Harrison, Cenovus
- L Lawlor, Imperial Oil
- K Cryer, M Metzger, S Brown, C Chattaway, Earthmaster
- D McMillan, SNC
- G Stephenson, Stantec
- Solution T Chidlaw, MWH
- S Steed, NorthWind
- A Traverse, Baytex
- G Adams, URS
- 🕹 🛛 B Chubb, Maxxam

Dawson Creek - 1, BC — End of Season (2009) Soil Impact – PHC

Dawson Creek - 1, BC — End of Season (2009) Soil Impact – PHC

Impacted area

Control

Dawson Creek - 1, BC – EPH (C10-C19) Remediation (2009)

Dawson Creek - 1, BC – EPH (C19-C32) Remediation (2009)

Weyburn, SK – 2: End of Season (2010, Year 1) Soil Impact – Salt

