

CARUS[®] Coupling Surfactants with Permanganate for DNAPL Removal: Coinjection or Sequential Application as Delivery Methods

Pamela J. Dugan, Ph.D., Carus Corporation Robert L. Siegrist, Ph.D. Colorado School of Mines Michelle L. Crimi, Ph.D., Clarkson University

Today's Agenda

- Motivation for surfactant-enhanced permanganate
- Background:
 - Surfactants/permanganate
- Experimental approach, results, concluding remarks
- Recent work and next steps
- Questions

The Problem...Dense Nonaqueous Phase Liquid (DNAPL)

 Wide-spread global environmental problem due to low aqueous solubility and <u>denser than water</u>, able to migrate to great depths in an aquifer

CARUS

Source: Heiderscheidt, 2005

•Once DNAPL enters the environment it can pollute <u>many millions of gallons of groundwater</u> with huge dissolved plumes that serve as <u>long-term sources of</u> <u>contamination</u> (e.g., many decades)

Decane

LNAPL

H₂O

TCF

The Problem...DNAPL

- Examples are trichloroethene (TCE) & percholorethene (PCE)
 - Used to clean metal parts of machinery and in dry cleaning applications
 - These compounds are <u>toxic and</u> <u>carcinogenic</u> and very difficult to remediate

Motivation-Surfactant-Enhanced Permanganate

- Inadequacy of pump-and-treat for DNAPL mass removal has been well documented (e.g., Kavanaugh 2003, NRC 2005)
- Optimized remedial strategies often require multiple technologies to reach performance goals (i.e., treatment train)
 - For example, coupling surfactant-enhanced aquifer remediation (SEAR) with in situ chemical oxidation (ISCO)
- Treatment train can occur sequentially, concurrently, or spatially within a contaminated site

Dissolved Plume Bio, MNA , ISCO (for speed) Core Plume ISCO, Bio, P-and-T Source Zone SEAR, ISCO, Excavation, Thermal

Surfactant-Enhanced Aquifer Remediation (SEAR)

• Surfactants-<u>Surface-Active Agents</u>

CARUS®

- Hydrophilic head/hydrophobic tail
- Above the critical micelle concentration (CMC) form structures that alter properties of organic-water interface (anionic, nonionic) 9.9
- Can enhance DNAPL removal by solubilization/mobilization
- Surfactants are very useful for treating DNAPL <u>not</u> dissolved phase contaminants

Surfactant-enhanced DNAPL solubilization

In Situ Chemical Oxidation (ISCO)

Delivery of oxidants into the subsurface to destroy organic contaminants in soil and ground water

RemOx[®] S (KMnO₄) and RemOx[®] L (NaMnO₄)

PCE:

 $3C_2CI_4 + 4KMnO_4 + 4H_2O \rightarrow 6CO_2 + 4MnO_{2(s)} + 4K^+ + 8H^+ + 12CI^-$

 Permanganate is very good at treating dissolved phase contaminants...not very useful treating large masses of DNAPL

ISCO Delivery Technologies

Sequential Application

SEAR (Primary Treatment) ISCO (Polishing Step)

Domestic

Water Well

Water Table Vadose Zone

ISCO with PermarSurfactant Flushse Plu

Coupling SEAR with ISCO Economic Implications

- Surfactant costs can be significant...
 - At higher concentrations (e.g., 4-8 wt%) could likely be the largest individual project cost
 - Using more pore volumes (PVs) also increases project costs significantly
- When properly designed...

CARL

 Cost savings could be realized by using lower concentrations of amendments (e.g., < 2 wt%) as well as fewer PVs of flushing

Coupling SEAR with ISCO -Remediation Implications

- ISCO is typically not well-suited for removal of high saturation/pooled DNAPL zones
- SEAR not useful for plume treatment-can only be used for DNAPL mass removal
- Potential sequential application advantages...
 - SEAR for removal of large masses of DNAPL
 - ISCO as a polishing step
- Potential coinjection advantages...
 - Potential for "inject and leave"...less time spent in field
 - No aboveground treatment of fluids

Experimental Approach

- Batch experiments:
 - Coupling surfactants/cosolvents with KMnO₄
 - Goal: find compatible pairings for use in 2-D cell studies
- 2-D flow-through cell experiments:
 - Evaluate two SEAR/ISCO delivery methods
 - Remedial goal: > 90% mass removal using low surfactant/oxidant conc.'s with < 1 PV flushing

Delivery Methods

- Co-injection:
 - Coupling surfactant-enhanced solubilization of DNAPL with ISCO for DNAPL mass destruction in a <u>single step</u>
 - Sequential application:
 - Coupling surfactant-enhanced solubilization of DNAPL <u>followed by</u> polishing with ISCO

 Batch screening tests with 72 surfactants (anionic and nonionic) with KMnO₄

- Compatibility Criteria:
 - Relatively low oxidant demand (< 25% of oxidant consumed after 24-hour reaction period)

Results – Batch Experiments

0.01-wt%

1.0-wt%

Effluent port

Approach 2-D Flow-Through Cell Studies

Finegrained matrix K_{sat}=0.02 cm/sec

Coarse lens K_{sat}=0.3 cm/sec

PCE DNAPL pool ~ S_N 11%

Influent port

Cell dimensions: 30 cm. x 30 cm. x 4 cm.

Flow

Approach 2-D Flow-Through Cell Studies

Horizontal Transect 1

Methods – Co-injection

- Co-injection solution/methods: US Patent 7553105
 - 1.5-wt% surfactant/co-surfactant, 0.35-wt%
 CaBr₂, 0.75-wt% NaBr (1.5-wt%_{total})
 - PCE solubility: 202 \rightarrow 465,000 mg/L
 - DNAPL solubilization/mobilization as removal mechanisms
 - 0.5-wt% KMnO₄

Methods – Co-injection

- PCE added: 3.82 g
- Cell PV = 1.5L
- Natural dissolution: 0.9 mL/min (12 cm/day)
- 0.66 PVs of surfactants with permanganate were injected in a single step
- Flushing flow: 3.8 mL/ min (52 cm/day)
- PCE, chloride, and KMnO₄ samples (8 point sampling ports and effluent)
- 2-D cell extracted in hexane at conclusion

Co-injection

F

Results – Co-injection

Transect 1

Pre-flush	During flush	3-days post		

C000D000

E 34 8238 0

Effluent Flow Influent

Conclusion (2 weeks-post) all ports =0 Effluent

 $\mathbf{0}$

Pre-18During (0.2 PV)303-days post14Conclusion0.002

 $\mathbf{0}$

47 Н G B Α **Pre-flush** 35 80 65 $\mathbf{0}$ During (0.2 PV) 68 109 2052 110 **3-days post** 0 0 $\mathbf{0}$ 0 Conclusion (2 weeks-post) all ports = 0Units = mg-PCE / L

Methods – Sequential

- Sequential flushing solution:
 - 0.66 PVs of surfactants and electrolytes (1.5wt%) followed by:
 - 0.66 PVs of 0.5-wt% $KMnO_4$ in SGW
 - PCE added: 3.68g
 - Natural dissolution: 0.9 mL/min (12 cm/day)
 - Flushing flow: 3.8 mL/min (52 cm/day)
 - Samples: PCE (SEAR), PCE, Cl⁻, KMnO₄ (ISCO)

CARUS®

Results – Sequential

Results – Sequential

Treatment Steps	Natural Dissolution DNAPL Removed (%) (PCE effluent)	Step 1: SEAR DNAPL Removed (%) (PCE effluent)	Step 2: ISCO DNAPL Removed (%) (CI ⁻ effluent)
Step 1: 0.66 PV of 1.5-wt% surfactants, electrolytes Step 2: 0.66 PV of 0.5 wt% KMnO ₄	11.2	84.2	4.6

Performance Assessment

Delivery Method	Total PCE DNAPL Removed (extraction)
Co-injection- Surfactants with KMnO ₄ in a single step	99.8%
Sequential Application- Surfactants <i>followed by</i> KMnO ₄	100%

 Reached remedial goal - low conc's < 1 PV of flushing >90% removal PCE DNAPL

Conclusions

- Batch experiments:
 - 4 surfactants were found to be compatible with permanganate (< 25% mass loss in 24hr reaction period)
- 2-D cell studies:
 - Reached remedial goal of >> 90% DNAPL removal using relatively low surfactant/oxidant concentrations and < 1PV of flushing

Recent Developments –

Effect of Permanganate Concentration

Current and Future Work

- Dugan, Crimi, and Siegrist. (2010). "Coupling surfactants/cosolvents with oxidants for enhanced DNAPL removal: A review." Remediation Journal, 20(3), 27-49.
- Kinetic studies for optimization of surfactantenhanced permanganate oxidation of DNAPL
- Collaboration with Dr Michelle Crimi (Clarkson University)
 - Surfactant- and polyphosphate-enhanced permanganate oxidation of DNAPL through MnO₂ particle stabilization: 2-D flow through cell experiments

Thank you! Questions?

pamela.dugan@caruscorporation.com

Results – Sequential (SEAR)

	T	ransect 1					4	
Pre-	SEAR	During	3-days post	ſ			1	
		(0.4PV)					¢	
С	0	0	0	-	F	I G	D B <mark>PCE</mark>	A ← 2
D	0	0	0		-		Ę	
Е	28	36481	0		1		F	
F	0	0	24	Effluen	τ	<	Flow	Influent
					•	Trans	ect 2	
Efflu	ient			ŀ	4	G	В	A
Pre-	SEAR	27	Pre-SEAR	Z	10	68	69	0
Durir	ng	24	During (0.4 P	V) 1	8	59	3225	0
3-da	ys post	165	3-days post Units = mg-PCF	= / I	0	0	0	0

Results – Sequential (ISCO)

	Tra	nsect 1				41		
F	Pre-ISCO	During (0.4PV)	3-days post					
С	0	0	0		H G	B PC	E A	← _2
D	0	0	0			F		
Е	91	0	0 Et	ffluent		- Flow	_	Influent
F	0	0	0		Trans	sect 2	_	
Cond	clusion (24 d	lays pos [.]	t-ISCO) all ports =	0 _H	G	B	А	
Ef	fluent		Pre-ISCO	0	0	0	0	
Pr	e-ISCO	165	During (0.4P\	/) 0	34	64	0	
Du	uring (0.4 PV)	83	2 dave post	,	0	0	0	
3-	days post	26	S-days post				U	N – 0
Сс	onclusion	BDL	Units = mg-PCE /	4 uays / L	post-150	JU) all	pons	$\mathbf{s} = 0$