

complex world CLEAR SOLUTIONS"

Polybrominated Diphenyl Ethers as a Source of Contamination from Landfills

Monica Danon-Schaffer, PhD. P.Eng.

October 2010

Topics of Discussion

- The Problem
- Why do we Care?
- Brominated Flame Retardants (BFRs)
- Toxic Chemicals
- Polybrominated Diphenyl Ethers (PBDEs)
- Sources to Environment
- PBDEs in landfills and leachate
- Canadian Arctic
- Modelling
- Conclusions

What is the problem?^{BFR's} BFR's BFR's BFR's

RIS

BFR's 5,818 Brominated Flame Retardants (BFRs)
Polybrominated diphenyl ethers (PBDEs) belong to BFR group

Applied to ~2.5 million tonnes polymers/year

Added to polymers to enhance flame retardancy

> Thermally stable, low cost, readily available

Lipophylic, bioaccumulative, persistent, LRT

Endocrine disrupters

Why do we care?

- Persistent, bioaccumulative, long-range transport (PBT), lipophilic
- Find their way into food chain and human population
- > Endocrine disrupting chemicals
- Concentrations in environment have been increasing since 1970s
- Leach out of products; end up in sewage

Toxic chemicals – human health

Reproductive Hormone Effects

Meeker et al., 2009 –

Decrease in Androgens and LH; Increase in FSH and Inhibin Meijer et al, 2008 Decrease in Testosterone

Reproductive Effects

– Eskenazi et al., 2009 Low Birth Weight; Altered Behaviours

- Harley et al, 2010

Increased time to pregnancy

Decreased Sperm Quality

- Akutse et al, 2008

Diabetes

Lim et al, 2008Turyk et al, 2009 (only in hypothyroid subjects)

>Thyroid Homeostasis

- Herbstman et al, 2008 decrease in TT4
- Turyk et al, 2007 elevated T4
- Meeker et al, 2009 elevated T4, TBG
- Dallaire et al, 2009 -Elevated T3 ~BDE47
- Eskenzelet al, 2009 Low TSH

Toxic chemicals – animal health

Reproductive

 Abnormal gonadal development, reduced ovarian follicles, reduced sperm count

Neurological

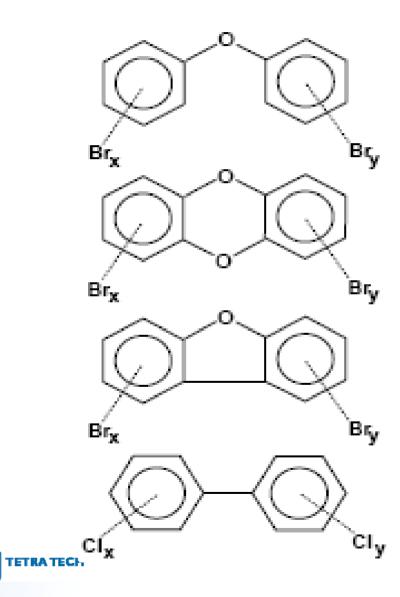
 Decreased memory, learning deficits, altered motor behavior, hyperactivity

Thyroid hormone action

Interference

Endocrine disorders

- Obesity and diabetes
- Cancer


Sources of PBDEs to the Environment

- Electronic waste (*e-waste*)
- Consumer products
 (Non electronic waste solids or NeWS)
- Wastewater or sewage treatment
 plants (STPs)

Compounds with similar structures

ŦŁ

Polybrominated Diphenyl Ether (PBDEs)

Polybrominated Dibenzo-p-dioxin (Dioxin)

Polybrominated Dibenzo-furan (Furan)

Polychlorinated Biphenyl (PCBs)

Polybrominated Diphenyl Ethers (PBDEs)

- > Used globally as flame retardants
- Highly toxic, persistent; endocrine-disrupting chemicals, with potential for long-range transport
- Persistent organic pollutants (POPs)
- Two of the three commercial products added to Stockholm Convention (2009)

PBDEs added to products to reduce ignition; thought to save lives

Polybrominated Diphenyl Ethers (PBDEs)

PBDEs spread globally

 Polar regions surpassing "classical" POPs (e.g. dioxins, furans, PCBs)*

Rising concentrations of PBDEs in environment

Ecological and human health risks require early implementation of best-management practices to contain PBDEs

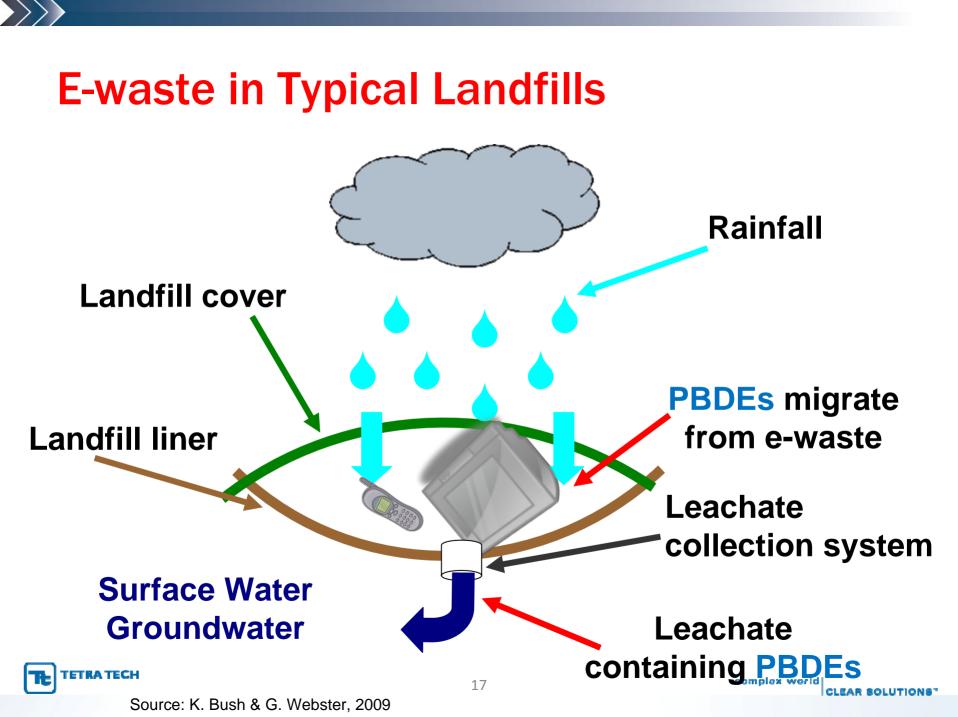
PBDEs in the Environment

- > Major source of PBDEs
 - Plastics in electronic equipment
 - Polyurethane foam
 - Textiles
 - Vehicle interiors
- Most electronic equipment discarded, ending up in landfills as e-waste
- Use of computer equipment expanded by orders of magnitude since the 1980s, making e-waste fastest growing waste stream

PBDEs in the Environment

PBDEs still entering disposal or end-of-useful life phase

- Concern with respect to release of PBDEs into environment
 - Leaching from landfills
 - Incineration
 - Sewage treatment effluent
 - Applied as biosolids


PBDEs in Landfills – possible sources

Source: Alex Stone, WA Dept of Ecology

Where should the flame retarded furniture go?

m

What ends up here?

Well....

- Canadian federal government discards ~ 2,250 tonnes/yr e-waste (2008)
- >350,000 mobile phones discarded daily in US (2009)
- > >130,000 computers discarded daily in US (2009)
- \geq 2.6 million tonnes e-waste in US to landfills (2007)
- ~400.000 units e-waste enter Nigeria/mo; ~ 75% scrap (Origin: ~45% US, ~45% EU, ~10% other)
- ~ 20-50 million tonnes e-waste generated/yr worldwide (UNEP, 2005)

~50-80% of e-waste collected for recycling exported from US complex world 19

CLEAR BOLUTIONS

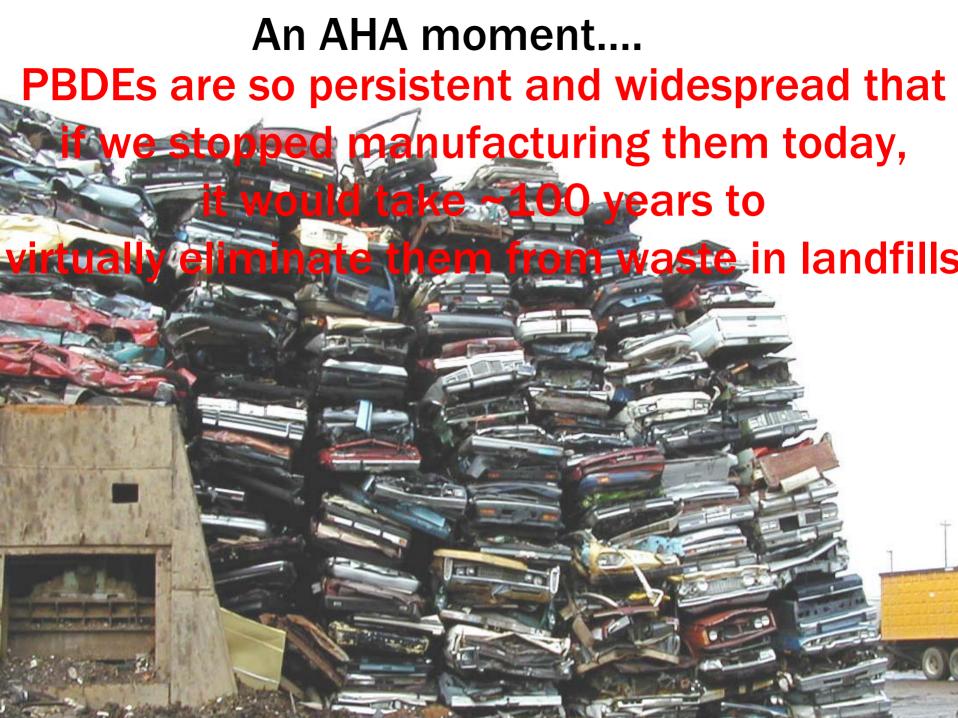
- Long-term diffuse emissions and leaching from landfills are possibilities
- Electric and electronic equipment (EEE) waste stream of concern because historically had high percentage of PBDEs
- Recent reduction in BFRs incorporated into new computers not been completely eliminated

Legacy of historical waste remains

PBDEs migrate from landfills into ground and surface water

Landfills considered main entry for municipal wastes containing PBDEs

Few studies evaluate fate of PBDE-containing products in landfills


Once PBDEs enter a landfill, they may volatilise, leach and /or diffuse into different environmental compartments

- Limited info on fate in waste disposal streams (landfills, sewage treatment plants, incinerators)
- Discarded plastics subject to ultra-violet radiation, thermal stress, grinding and other degradation processes at end of their useful lives
- Leach from plastic when added to polymer at moulding stage

More ending up in landfills

6.6 million tonnes e-waste discarded from EU (2009)

> 70% of world's e-waste processed in China (2009)

~100 million electronic goods discarded/yr in UK; weight = 2,400 jumbo jets

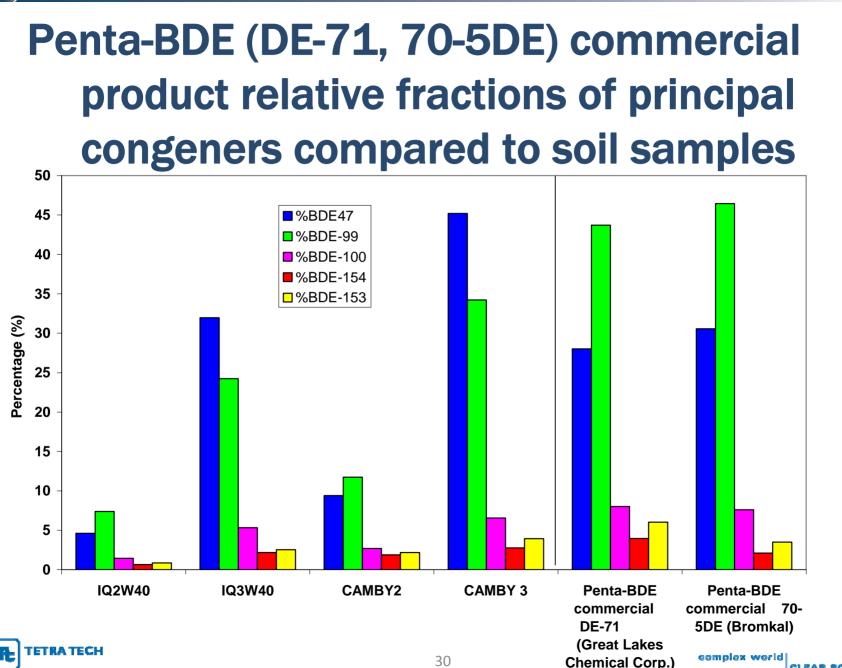
130 million cell phones thrown out worldwide/yr (UNEP, 2007)

Canadian Tire of the North

Canadian Arctic

Landfills/dumpsites in Canada's North

- Assessed to identify local sources of PBDEs distinct from long-range atmospheric deposition
- First study in Canadian North to investigate PBDE congener patterns in aqueous media (leachate, effluent and background water), and in soil
- Investigated how PBDEs enter and transfer among landfill leachates and soils
- Provided better understanding of PBDE leachability from e-wastes, other PBDE-containing products, and mobility in soils


Major BDE congeners found in surface soil samples from the Canadian North (pg/g, dw)

Location sampled	Description	BDE-47	BDE-99	BDE-100	BDE-153	BDE-154	BDE-183	BDE-206	BDE-207	BDE-209	Total PBDEs [§]	BDE-209 as % of Total PBDE	BDE-47 / BDE-99	BDE-47 / BDE-100
YELL01	Old dumping area of landfill; 2 samples averaged**	528	847	175	110	72	101	568	612	20,816	24,418	85.2	0.6	3.0
YELL02	White goods area of landfill; 2 samples averaged**	132	183	37	27	16	33	43	71	1,322	2,010	65.8	0.7	3.6
YELL03	Current landfill working area**	160	138	33	10	9	7	13	12	449	888	50.5	1.2	4.8
YELL04	2 km downstream from landfill boundary; background*	99	62	14	5	3	8	11	24	666	903	73.8	1.6	7.1
IQ2W40	West 40 landfill (current)**	35,448	56,663	11,056	6,608	5,070	4,740	19,764	7,550	597,263	766,494	77.9	0.6	3.2
IQ3W40	West 40 landfill (current)**	27,743	36,003	7,910	3,755	3,238	999	ND	ND	42,499	148,617	28.6	0.8	3.5
IQ4W40	West 40 landfill (current)**	55	22	8	2	1	2	ND	ND	2,143	2,313	92.7	2.5	7.1
IQ6	Former military dump end of old runway**	71	27	8	2	1	6	47	32	2,295	2,502	91.7	2.6	8.6
IQ7	Former military scrap from 1940s**	191	295	73	34	29	33	34	50	960	1,810	53.0	0.6	2.6
	Apex flats, in tidal zone ~400m from shore; background*	109	38	11	2	2	4	21	10	890	1,102	80.8	2.9	9.6
CAMBY2	Sewage effluent drainage area**	5,139	6,359	1,462	1,169	1,023	813	947	1,267	25,901	54,478	47.5	0.8	3.5
CAMBY3	Municipal dump**	26,648	42,364	8,124	4,858	3,429	1,361	825	1,040	29,063	133,659	21.7	0.6	3.3
CAMBY5	Downstream of CAMBY2, prior to ocean discharge**	2,231	2,495	531	313	297	241	664	571	14,315	24,849	57.6	0.9	4.2
CAMBY6	Metal dump, auto and other vehicle scrap, etc.**	8,569	15,344	3,332	47,350	11,970	199,344	2,531	32,457	14,275	514,874	2.8	0.6	2.6
CAMBY7	Mid town**	420	521	121	58	57	61	1,062	588	58,275	61,784	94.3	0.8	3.5
	Enroute to Mt Pelly 5km NE of town; background*	100	62	16	7	5	33	99	89	4,011	4,540	88.3	1.6	6.3
Average: sites - tested (13) Average background (3)		8,256 102	12,405 54	2,529 14	4,946 5	1,939 4	15,980 15	2,038 40	3,404 33	62,275 1,634	133,746 2,182	46.6 74.9		

ND - non detect; * - background; ** - test sites

§ - Total of all detectable congeners, not just the 9 principal ones listed here.

TETRA TECH

CLEAR SOLUTIONS

Mass balance modeling

Mass balance modeling of a landfill

Mathematical rep of PBDEs transferring out from e-waste and other products in a landfill

> 3 subsystems:

e-waste

ETRA TECH

- aqueous phase
- non-e-waste solids or NeWS

> 24 ordinary differential equations (ODEs)

To predict environmental fate of PBDEs in landfills

complex werid

Mass balance modeling of a landfill

Assumptions:

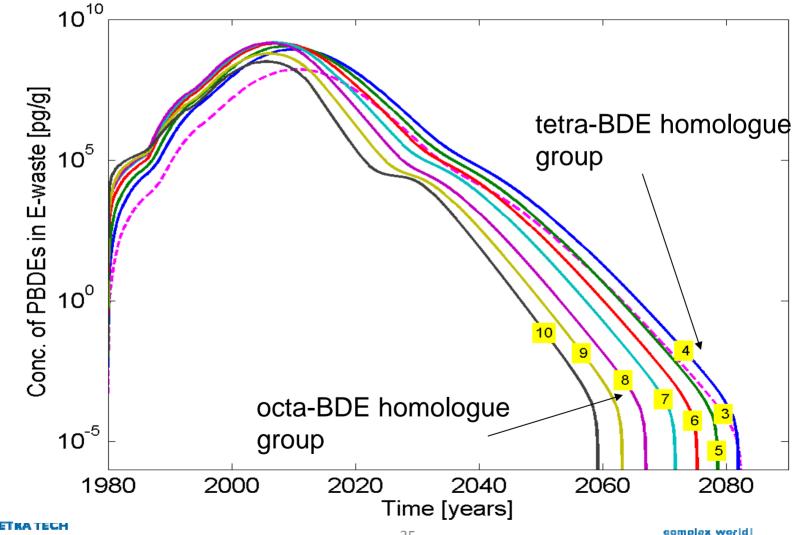
- Well mixed
- BDE congeners combined as homologue groups
- Stepwise degradation of PBDEs
- First order degradation kinetics
- Reaction rate constants from half lives in literature
- Mass transfer coefficients same as experimental data
- NeWS subsystem assumed constant flow of soil, sand, bottom ash as landfill cover
- Isothermal

lass balance model: simulation scenarios

Scenario 1

Past three decades

Scenario 2


Future with PBDE ban and 16 sensitivity analysis

Scenario 3

Future with all PBDE input terminated

Mass Balance Model Simulation: Scenario 2 – Future with PBDE bans

complex world CLEAR SOLUTIONS*

Outcome

How PBDEs reach the environment, transfer from waste streams to air, water and soil, and transport to distant locations, such as Canada's far north

Conclusions

Landfill leachate is source of PBDEs in environment

- Landfills in Northern Canada have lower PBDE concentrations than in Southern Canada
- Leachate sampled across Canada higher PBDE concentrations than reported from U.S., Japan, Sweden, and South Africa
- Determine process for leaching, degradation and spread of PBDEs from landfills

Conclusions

- Banning PBDEs today will take 70-100 years for virtual elimination in landfills
- PBDEs persist in environment for decades even if no longer manufactured
- Policy implications for end-of-life consumer products

complex world CLEAR SOLUTIONS*

Questions?

