

Acknowledgments

Success Through Science®

Dr. Bruce Greenberg

Dan Toner

Dr. Court Sandau

Perry Gerwing

Dr. Tiona Todoruk

- What is the potential bias with the CCME hydrocarbon method?
- Review of other research on the issue
- Inside the lab Extraction and cleanup method
- Key findings of why silica gel cleanup as prescribed is not effective for all soils
- Case Studies
- Recommendations

Not Your Typical Contaminated Site

Ontario MOE Background Soil Survey

- In the summer of 2009, Ontario MOE revisited 180 rural and old urban parkland sites that were originally sampled in 1991 to update Ontario Typical Range values for chemicals of concern
- 218 surface soil samples were selected for PHC analysis
- Only 36 of 218 were ND for F3
- 8 samples <u>exceeded</u> AT1 or MOE
 Table 3 criterion
- Average concentration 78 ug/g
- F4 not as prevalent

Why do we have this Problem?

- Biogenic Organic Compounds (BOCs) such as sterols, fatty acids and fatty alcohols although highly polar are partially extracted in the hexane:acetone solvent mix
- If not removed by extract cleanup strategies, these compounds are considered petroleum hydrocarbons by regulators
- Mainly elute in the F3 (C16-34) and some in the F4 (C34-C50) fraction
- This is a well documented old issue, but a clear solution is not available

Typical BOC Signature

Potential Impacts of False Positives

- Potential buyers walk away from "clean" sites
- Consultants may recommend or actually remediate clean sites
- Different labs may yield significantly different data
- Financial impacts can be enormous

- The CCME method recognizes that BOCs will interfere and create a biased high result for F3/F4 hydrocarbons
- Treatment of extracts with silica gel is incorporated into the method to help remove these interferences
- Despite the silica gel cleanup false positives for F3/F4 still are very common for high organic soils

CCME Recommended Approaches

- CCME recommends:
 - Background subtraction
 - GC/MS analysis
 - Dilution of extracts/column cleanup
- Triple silica gel cleanup often used with some controversy
- These approaches have not effectively dealt with the issue

- Kelly-Hooper & Zhendi Wang (2009), Maxxam (2007), Exova (2007), UMA/ALS (2006)
- Papers/presentation decks from this research indicated that silica gel is insufficient to remove all BOCs in high organic soils
- Work from these groups focused on differentiation of petrogenic from biogenic compounds by GC/MS using biomarkers, odd/even alkane patterns and other strategies

- application of these techniques in a commercial setting
- Some data users may not recognize they have background BOC so don't know to ask for additional biomarker or GC/MS analysis
- clients are rarely willing to invest in expensive analysis, detailed subtraction and letter reports
- Regulators may not approve these alternate subtraction techniques
- Do not deal well where samples contain both BOCs and petrogenic hydrocarbons

No one seems to have asked why the silica gel is not working?

Determine a *cost effective, validated* option for customers that have samples rich with natural organics or a mix of petroleum and Biogenic Organic Compounds (BOCs) which will allow the laboratory to report a result that is representative of the true value of only petroleum hydrocarbons in soil samples.

Summary of the F2-F4 Extraction Method

- Petroleum products are complex mixtures of aliphatic, aromatic and other additives
- Aliphatic PHCs are non polar
- PAHs are more polar than aliphatics, but still considered non polar
- PAHs "stick" to silica gel based on their unsaturated ring structure
- Most BOCs are very polar and will bind to the silica gel based on their polarity

Second Rinse of Silica Gel Column

Success Through Science®

1:1 Hexane: DCM added to recover PAHs

Trapped aromatics and potentially BOCs are pulled off column by DCM

This extract combined with hexane rinse for GC analysis

In-situ Silica Gel Cleanup

- The most common approach to silica gel cleanup by commercial labs is the in-situ method
- Activated silica gel is stirred in to the soil/solvent mixture then agitated by mechanical extraction (paint shaker)
- 1:1 Hexane:DCM added to the extract after mixing

- 2005 National Council for Air and Stream Improvement (NCASI) out of Oregon issued improved cleanup method to members
- NCASI members are companies in the forest products industry
- The research evaluated the BOCs in bark and wood debris of various tree species and different removal techniques

ATTORAL COORCIL TOR ATR AND STREAM IMPROVEMENT

IMPROVED CLEANUP
PROCEDURE FOR CANADA-WIDE
REFERENCE METHOD FOR
PETROLEUM HYDROCARBONS
IN SOIL

TECHNICAL BULLETIN NO.910 DECEMBER 2005

by Larry La Reur NCASI West Coast Regional Center Corvallis, Oregon

- NCASI method requires an ex-situ column cleanup
- Comparing In-situ versus ex-situ was not within the scope of the study
- NCASI discovered that too much DCM will pull off not only the PAHs, but the very polar BOCs in the second rinse of the silica gel column
- How much DCM is really needed to recover > 95% of a weathered diesel?
- NCASI concluded a 1:4 (DCM:Hexane) recovers PAHs and does not pull off as much BOCs
- The improved method reduced the BOC interference by an average of 68% across bark tree species and an average of 75% in wood debris as compared to the CCME method

NCASI Method vs Benchmark CCME

PHC Fraction	CCME Benchmark Method (ex-situ)	NCASI Method (ex-situ, 4:1 Hexane:DCM)	% Reduction
F2 (C10-C16)	45 ug/g	36 ug/g	20%
F3 (C16-C34)	2680 ug/g	1110 ug/g	62%
F4 (C34-C50)	2580 ug/g	286 ug/g	89%

- British Columbia does not require silica gel cleanup of hydrocarbon extracts for routine soils unless BOCs are suspected
- For these samples an additional cleanup method is available (Method 10, June 2004)
- Method prescribes ex-situ silica gel column cleanup
- 2 water washes to remove excess acetone
- Reverse surrogate (decanoic acid) to ensure cleanup is working and no break though occurred
- Is there less squawking from BC consultants on the BOC issue?

In-situ or Ex-situ Silica Gel Cleanup?

- CCME method allows either in-situ (add silica gel to soil/solvent mixture and stir) or ex-situ column cleanup approaches
- Unless specifically requested the default method for most private commercial laboratories is in-situ
- less laborious and is suitable for most subsurface soils
- Market price for CCME PHCs has dropped by more than 50% since 2004

Efficiency of In-Situ vs Ex-Situ – F3 Fraction

*all samples treated in 1:1 DCM:Hexane

Success Through Science®

Sample	F3 Concentration - No Cleanup	F3- In-Situ (ug/g)	% Removal	F3 Ex-situ (ug/g)	% Removal
	(ug/g)				
Parkland 1	2400	610	75%	220	91%
Parkland 2	3100	870	72%	300	90%
Parkland 3	2600	580	78%	180	93%
Parkland 4	2900	590	80%	220	92%

Ex-situ column cleanup alone on these parkland soils remove enough BOCs to bring the F3 values at or below AT1 and just above MOE Table 1 standards

Efficiency of In-Situ vs Ex-Situ – F4 Fraction

*all samples treated in 1:1 DCM:Hexane

Sample	F4	F4- In-Situ	% Removal	F4 Ex-situ	% Removal
	Concentration - No Cleanup	(ug/g)		(ug/g)	
	(ug/g)				
Parkland 1	1200	350	71%	170	86%
Parkland 2	1600	490	69%	330	79%
Parkland 3	1200	180	85%	100	92%
Parkland 4	1300	210	84%	180	86%

Why is the Silica Gel not 100% effective?

- 1 g of silica gel will remove 10 to 30 mg of interferences EPA
 Method 1664
- 0.6g of silica gel per gram of sample is prescribed in the CCME method
- in theory (according to EPA) it should be capable of removing 100% of polar BOCs up to 30,000 ug/g (ppm)
- So why do we have a problem?

- CCME method prescribes samples to be extracted with a 1:1 hexane:acetone solvent mixture
- Acetone helps break up soils and ensures complete extraction, particularly in clay soils
- Acetone is a polar solvent and if not removed prior to silica gel cleanup can occupy most of the binding sites
- Water washing or blow down used to remove acetone
- BC Method 10 requires the acetone concentration to be < 3% and have 2 water washes

Acetone Removal Step	Acetone Concentration after water wash
First Water Wash	8.1%
Second Water Wash	0.8%

Method Comparison Data – F3 Concentrations

Silica Gel	No Treatment	In-Situ	In-Situ	In-Situ
Silica Gel solvent Mix	n/a	1:1 Hexane:DCM	4:1 Hexane:DCM	1:1 Hexane:DCM
Acetone Removal	1 water wash	1 water wash	1 water wash	2 water washes
Compost	255 ug/g	212 ug/g (186)	124 ug/g (121)	107 ug/g (137)

⁽⁾ values in brackets are duplicates

Method Comparison Data – F3 Concentrations

Silica Gel	No Treatment	Ex-Situ (Column)	Ex-Situ (Column)
Silica Gel solvent Mix	n/a	1:1 Hexane:DCM	4:1 Hexane:DCM
Acetone Removal	1 water wash	2 water washes	2 water washes
Compost	255 ug/g	62 ug/g (91)	70 ug/g (73)
Spiked Compost Recovery	95%	88%	101%

F2-F4 Extraction Method Comparison

Element	CCME Method	BC Method 10	NCASI	Maxxam's OCBO* Method
Insitu/Ex- situ	Lab can pick	Ex-situ	Ex-situ	Ex-situ
Elution Solvent	1:1 (Hexane:DCM)	1:1 (Hexane:DCM)	4:1 (Hexane:DCM)	1:1 (Hexane:DCM) until regulator approval
Acetone Removal	1 water wash	2 water washes	1 water wash	2 water washes
Reverse Surrogates	None	Decanoic acid	none	Decanoic Acid

^{*} Maxxam's New Optimized Cleanup of Biogenic Organics (OCBO) Method

Chromatograms

FID2 B. (O:USERSWPCHEM8HPCHEM1/QATA/RUN1004/073B2301.D) 350 250 200 150 100

No Silica Gel Treatment

Standard CCME In-Situ

Optimized Method

- Surface soil sample collected in Alberta suspected to be impacted with crude
- Soil is highly organic
- F2-F4 concentration 3950 ug/g, with F3 = 2400 ug/g (no cleanup)
- 3 Techniques used to help estimate BOC content:
 - GC/MS biomarker analysis (told us petroleum is present)
 - Fourier Transform (Ion Cyclotron Resonance) Mass Spectrometer (courtesy of Ontario MOE)
 - Maxxam's Enhanced cleanup procedure

Unknown Sample Mix of BOCs and PHCs

Alberta Pure Crude Standard

Estimating Biogenic Contribution

- Although still a work in progress,
 FTMS data suggests that ~ 35% of the hydrocarbons present in this sample are biogenic
- FTMS price tag \$1.5M
- Enhanced cleanup indicated 33% of sample is biogenic

Unknown sample scrubbed of all crude oil peaks

Conclusions and Recommendations

- In-situ silica gel treatment <u>is efficient</u> at removing typical levels of BOCs but has limitations and is not appropriate for high organic soils
- Request Maxxam's enhanced cleanup method in these situations
- Ex-situ cleanup is more effective than in-situ
- If you don't remove the acetone silica gel treatment is pointless
- NCASI may be on to something
- The environmental professional needs to understand the BOC interference issue, what can be done about it and when to be suspicious of false positives

- Evaluation of other high BOC samples that contain different types of BOCs and concentration ranges
- Further evaluation of NCASI approach
- Seek regulator approval if NCASI method is as effective as documented

