



## Active In-Situ Petroleum Hydrocarbon Remediation in Discontinuous Permafrost – Practical Experience and Lessons Learned

Michael Brown, M.Sc., P.Geol., WorleyParsons, Calgary, Alberta

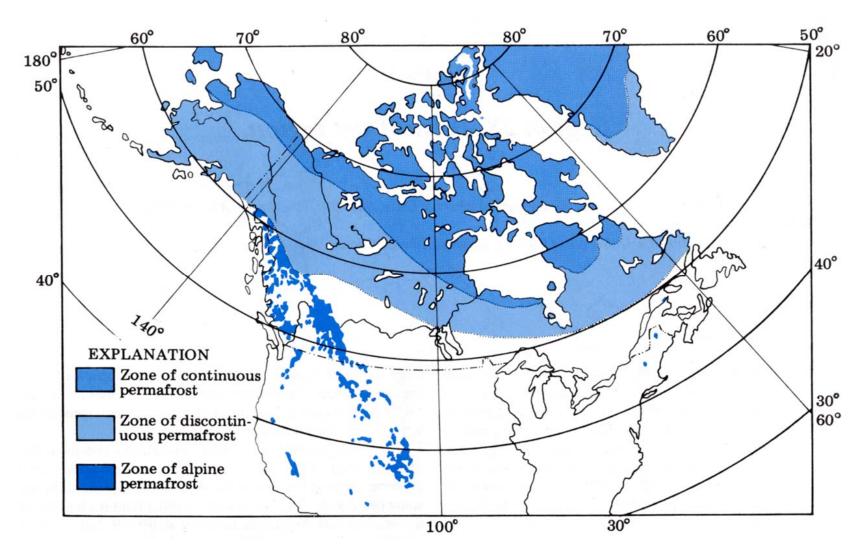
Remediation Technologies Symposium (Remtech 2010), Banff, Alberta, 21-Oct-2010





## **Presentation Overview**

- Permafrost Background
- Site Characterization Phase
- Conceptual Site Model
- Remedial Options Analysis
- Permeability Enhancement
- Full Scale Remediation System
- Challenges and Optimization (Lessons Learned)






**Eco**Nomics







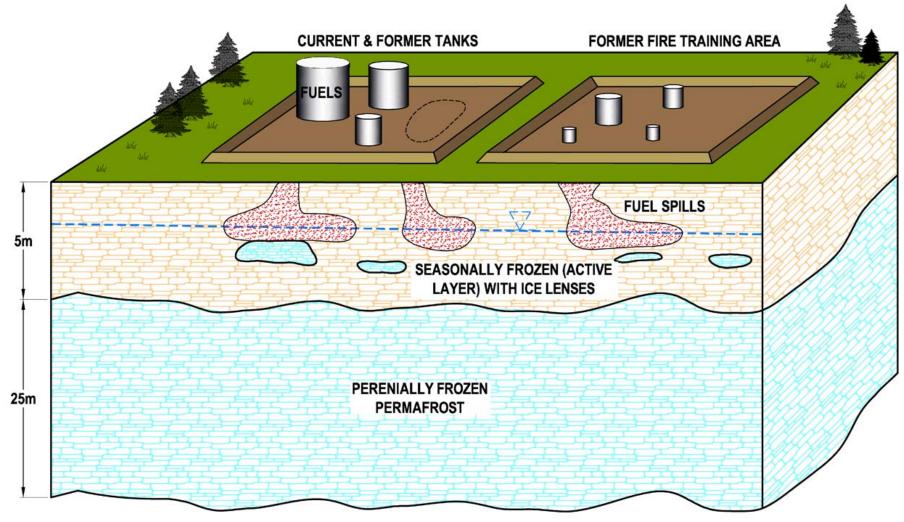
Source: Sloan & van Everdingen, 1988. Region 28, Permafrost region. In: Hydrogeology: Geology of North America, GSA.



### Some Potential Sources:

- Fire Training Area
- Multiple Above Ground Storage Tanks

### Phase II ESA:


- More than 60 piezometers
- More than 150 soil sampling locations
- Hydrocarbon delineation in soil & groundwater complete
- Permafrost characterization drilling and geophysics

#### **Remediation Planning:**

- Options analysis
- Three seasons of pilot testing
- Gradual scale up & optimize design



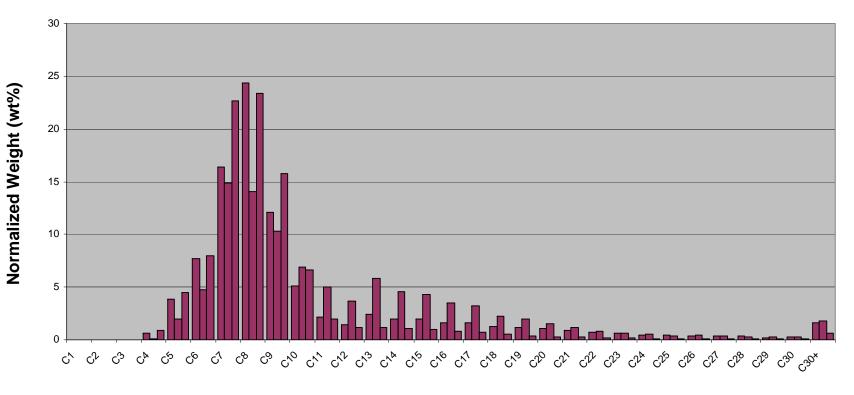
### **Conceptual Model**



SUBPERMAFROST GROUNDWATER



# **Remediation Options 1**


| Technique           | Description / Applicability                                                                    |
|---------------------|------------------------------------------------------------------------------------------------|
| Impacted soil       | <ul> <li>Approx. 100,000 m3 overlying permafrost</li> </ul>                                    |
|                     | Dominantly light-end hydrocarbon (F1-F2)                                                       |
| Excavate & landfill | <ul> <li>Transport costs to nearest landfill are prohibitive<br/>(more than 700 km)</li> </ul> |
|                     | Excavations will tend to degrade permafrost                                                    |
|                     | <ul> <li>Suitable backfill not readily available</li> </ul>                                    |
| Excavate & biocell  | PHC-F1, F2, limited F3 treatable                                                               |
|                     | Biocell treatment takes 1 to 2 seasons                                                         |
|                     | 4-month season, rainfall & frost slow progress                                                 |
|                     | <ul> <li>Limited current capacity, but expansion planned</li> </ul>                            |
|                     |                                                                                                |



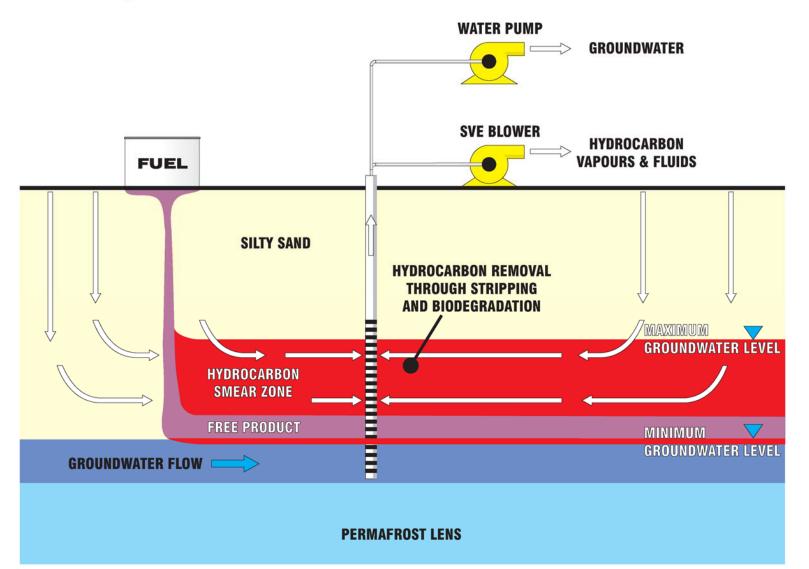
# **Carbon Group Distribution**

Light end hydrocarbon  $(C_4-C_{12})$  is primary remedial target

Refined hydrocarbon LNAPL in monitoring wells



Carbon Groups (C1 to C30)




## **Remediation Options 2**

| Technique                          | Description / Applicability                                                                                                                                                                                          |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Soil Vapour<br>Extraction<br>(SVE) | <ul> <li>Volatile contaminants only</li> <li>Above water table only</li> <li>Requires good permeability (fine sand to gravel)</li> <li>Promotes aerobic biodegradation</li> </ul>                                    |  |
| Dual Phase<br>Extraction<br>(DPE)  | <ul> <li>Recovers fluids by pump, vapours by vacuum line</li> <li>Applies to both volatile and non-volatile NAPL</li> <li>Can work in tighter permeability soils</li> <li>Promotes aerobic biodegradation</li> </ul> |  |



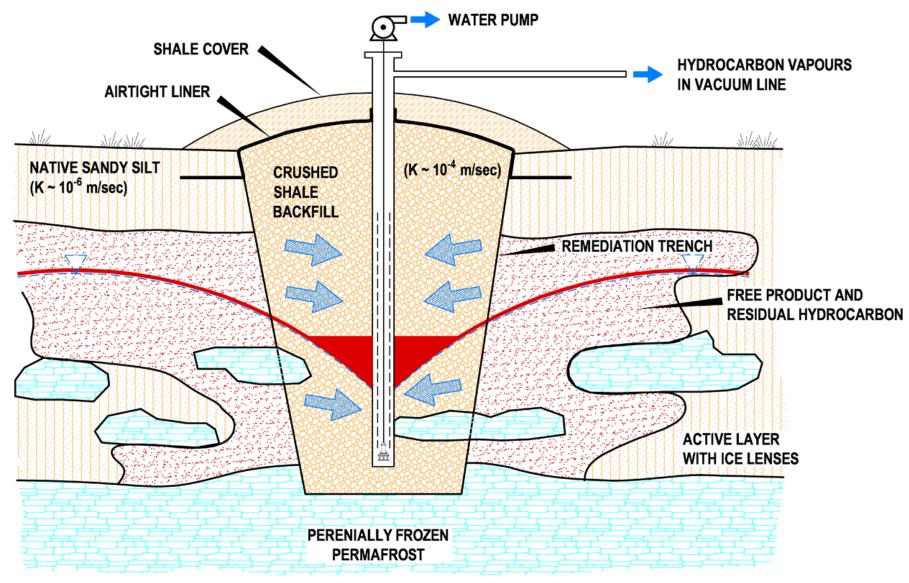
## **Remediation Strategy – SVE & DPE**





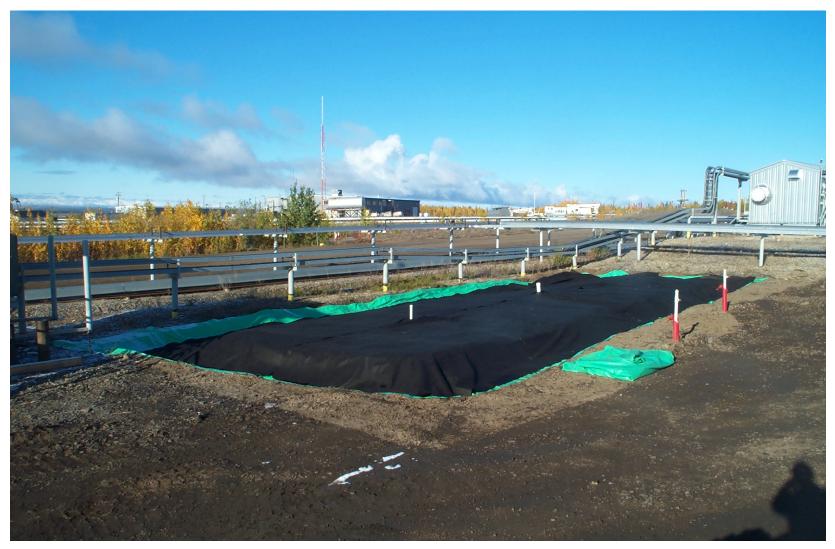
## DPE Strategy

- Shallow water table perched on permafrost
- Pumping lowers shallow water table
- High vacuum removes vapours
- Hydraulic and pore pressure gradients encourage LNAPL flow to trench
- Airflow also enhances natural biodegradation
- Pilot testing completed 2001
- Full-scale system commissioned October 2004
- Currently 30 trenches installed
- Operates seasonally when ground not frozen
- About 100 days per year



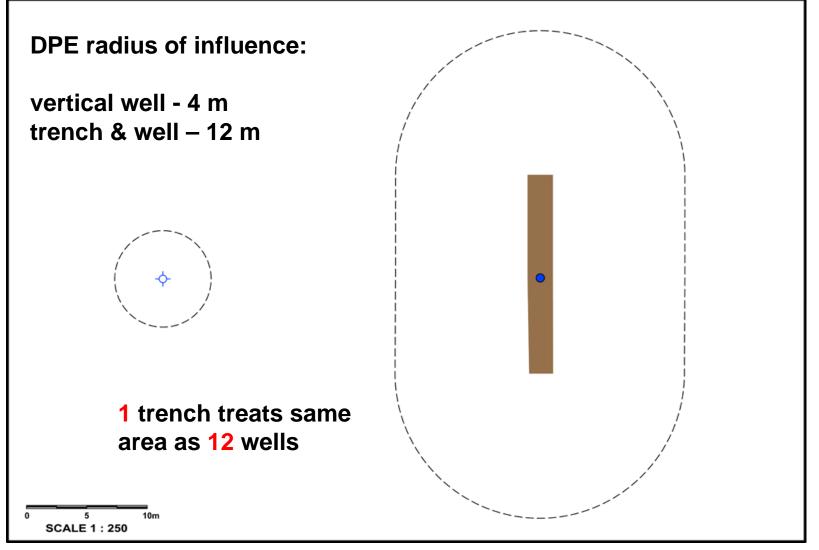

# WorleyParsons Enhancing Limited Permeability

| Technique                | Description / Applicability                                                                                                                                      |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trenches<br>vs.<br>Wells | <ul> <li>Effectiveness of in-situ remediation depends on<br/>permeability – it's dominant control on both vapour and<br/>fluid transport</li> </ul>              |
|                          | <ul> <li>Typically will flush out more permeable strata</li> <li>Diffusion of contaminants from low-K to high-K zones controls remedial timeframe</li> </ul>     |
|                          | Low-K zones can remain largely untreated                                                                                                                         |
|                          | <ul> <li>Permeable trenches are linear high-K features that<br/>focus gradients, and intercept discrete permeable<br/>pathways where migration occurs</li> </ul> |
|                          | <ul> <li>Trenches can be more effective than large numbers of<br/>vertical wells</li> </ul>                                                                      |



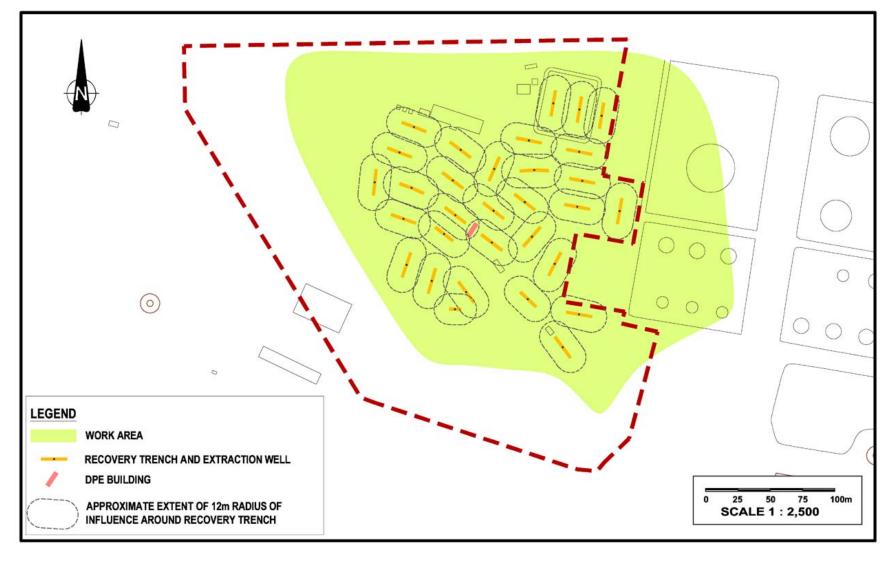

### **Remediation Trench for DPE**






## **Remediation Trench Installation**












### **Trench Potential Radius of Influence**





## Fluid & Vapour Gathering System

FORMER TANKS FIRE TRAINING BUILDING EETITE EETI TANK FARM ----

- 30 trenches
- 7 fluid headers
- 4 vapour headers



## **DPE Remediation Facility**





|                           | Days SVE or<br>DPE<br>Operational | Groundwater<br>Pumped<br>(m <sup>3</sup> ) | HC Mass<br>Removal<br>(kg) | HC Liquid<br>Equivalent<br>Barrels |
|---------------------------|-----------------------------------|--------------------------------------------|----------------------------|------------------------------------|
| 2004                      | 33                                | 400                                        | 2,911                      | 23                                 |
| 2005                      | 51                                | 553                                        | 7,313                      | 59                                 |
| 2006                      | 35                                | 1,480                                      | 1,926                      | 15                                 |
| 2007                      | 112                               | 1,043                                      | 7,856                      | 63                                 |
| 2008                      | 94                                | 489                                        | 2,964                      | 24                                 |
| 2009                      | 78                                | 1,941                                      | 2,674                      | 21                                 |
| 2010<br>(up to 15-Oct-10) | 95                                | 2,800                                      | 27,580                     | 221                                |
| TOTAL                     | 498 days                          | 8,700 m <sup>3</sup>                       | 53,200 kg                  | 470 barrels                        |

Based on LNAPL density of 770 kg/m3



## **Challenges and Lessons Learned 1**

| Challenges                                  | Lessons Learned and Solutions                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Seasonal operation                          | Active layer is seasonal, not much to gain by designing<br>to operate beyond May-October                                                                                                                                                                                                                                                                                                                                                                   |
| Permafrost<br>encroachment into<br>trenches | <ul> <li>Difficult to predict, spatially variable</li> <li>About 30% of trenches require more operator attention</li> <li>Well screen or pump intake in trenches may freeze off</li> <li>Vaporization of hydrocarbon encourages freezing</li> <li>Priority locations optimized with solar water heater</li> <li>Take advantage of long summer daylight</li> <li>Solar heating also enhances volatilization rate (water temperature raised 10°C)</li> </ul> |



## **Solar Water Heater Prototype**

resources & energy





| Challenges                             | Lessons Learned and Solutions                                                                                                                                                                                                                                 |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flammable vapours                      | <ul> <li>Design avoids electrical equipment near DPE wellheads</li> <li>Solution was pneumatic pumps, limited heat trace</li> </ul>                                                                                                                           |
| Downhole pump<br>freezing over time    | <ul> <li>Downhole pump freezing (submersible pneumatics) – water near 0°C and volatile HC cools further</li> <li>Solved with above-ground diaphragm pumps</li> <li>Easier to service and diagnose problems</li> </ul>                                         |
| Variable performance & balancing flows | <ul> <li>Variable water flows between wells depending on local ice lenses and silt/sand permeability</li> <li>Customize operation with multiple headers</li> <li>Limiting flow rates to match well yield</li> <li>Optimizing use of instrument air</li> </ul> |



- Complex Environment and Logistics
- Understanding Conceptual Model is Key
- Take Time to Properly Characterize
- Multiple Pilot Tests May be Necessary
- Expect Challenges as Full Scale System is Optimized
- Be Innovative Use Site Conditions to Advantage

