

complex world CLEAR SOLUTIONS"

Full-Scale Alkaline Hydrolysis of Organic Explosives in Soil

October 21st, 2010

Ronnie Britto, Ph.D., P.E. – Tetra Tech Joel Nolin, P.Eng. -Tetra Tech

Presentation Overview

- > Explosives at defence sites in North America
- Conventional remediation approaches
- Innovative options
- Successful case histories
- Further applications

Distribution of Explosives Contamination at Defense Facilities

- Organic explosives and their residues prevalent at:
 - army ammunition sites
 - ordnance sites
 - range sites
 - other federal manufacturing and storage facilities
- Predominant organic explosives are
 - trinitrotoluene (TNT)
 - dinitrotoluenes (DNTs), and
 - royal demolition explosive (RDX)

Conventional Remedies for Organic Explosives

- Biological Treatment: Feasible but can be slow and cumbersome
- Chemical Oxidation:
 - Employs application of strong oxidants such as hydrogen peroxide, sodium permanganate, or sodium persulfate,
 - Largely unproven, and
 - Could require repeated applications making the process prohibitively expensive

Stabilization:

- Difficult for organic explosives
- Disposal issues
- Existing limitations call for an innovative approach

Case Study – Site Description

- Volunteer Army Ammunitions Plant
- Government-Owned/Contractor-Operated facility
- Primarily used for the production and storage of TNT
- Built 1941 to 1943 in support of World War II effort, then Korean and Vietnam conflicts; production ceased in 1977
- In addition to extensive nitroaromatics contamination, metals contamination also present resulting from acid production in support of TNT manufacturing.

Innovative Treatment of Explosives

- CMS recommended excavation, stabilization, and offsite disposal for explosives
- Remedial goals required innovation
 - effective treatment of large quantity of soil
 - cost and schedule constraints
- Implemented in-house laboratory bench-scale tests to evaluate chemical treatment using:
 - chemical oxidants (traditional)
 - alkaline hydrolytic and catalytic agents

Alkaline Hydrolysis Process

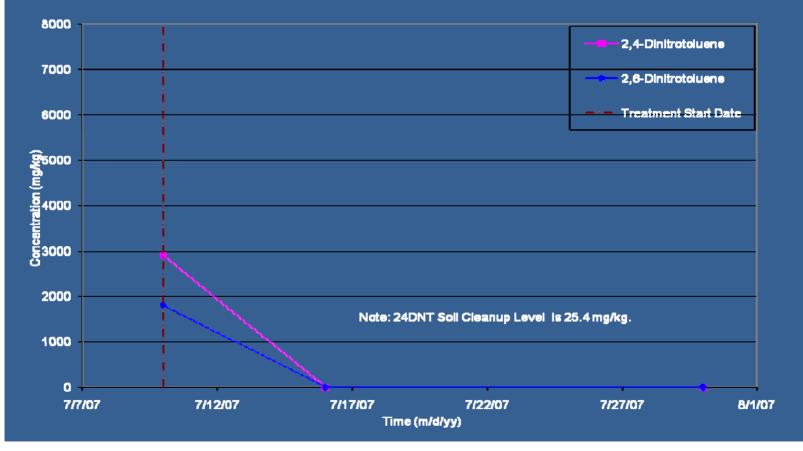
> Destroys contaminants via nucleophilic substitution

- Strong nucleophile (hydroxide ion) attacks electrophile
- Displacement of a leaving (functional) group
- Ring instability and cleavage
- End products such as formate and nitrite/nitrate

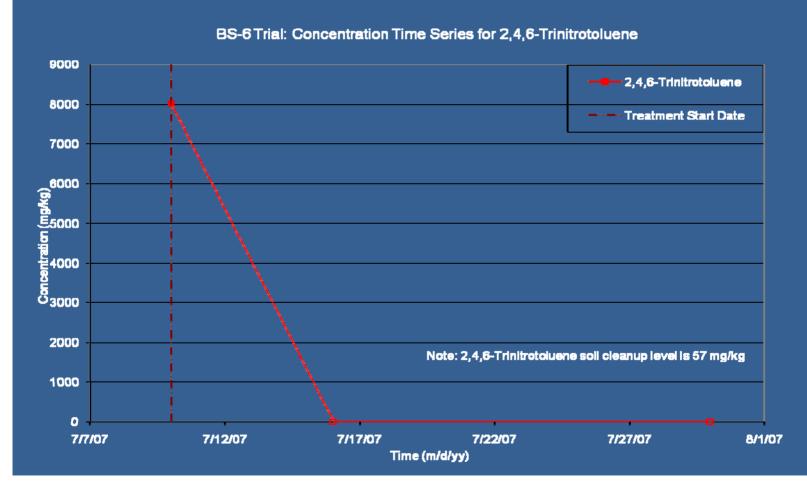
Bench-Scale Set-up

- Soil pan studies
- Varying quantities of selected chemical amendments
- Water added to achieve saturation
- Mixing
- Effectiveness sampling included:
 - pH (SW9040) and moisture content
 - Nitrates and nitrites (E300)
 - Explosives (SW8330B)

Results Of Bench-scale Studies


Bench-scale results indicated:

- High levels of explosives could be treated rapidly (within a week) using an alkaline hydrolytic agent
- "Material Balance" indicated complete treatment with no accumulation of organic daughter products
- Nitrites are the largest identifiable end product (denitrification could be required)
- Treatment in the field would be feasible and economical



Results Of Bench-scale Studies

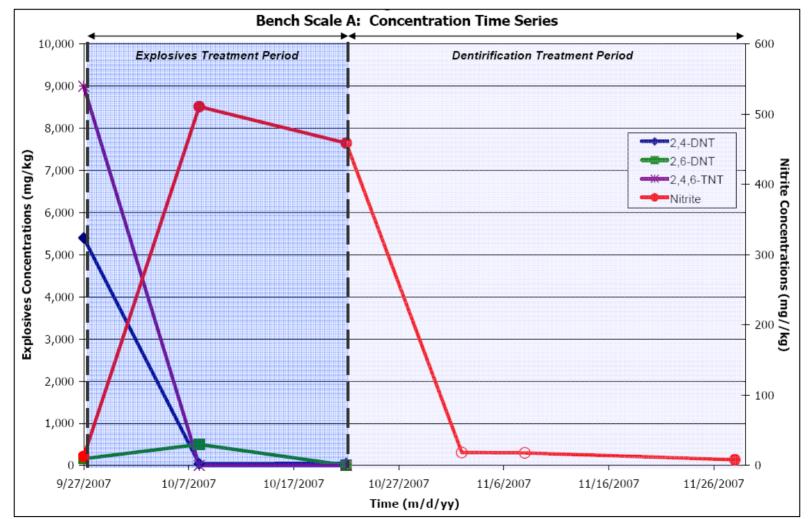
BS-6 Trial: Concentration Time Series for Dinitrotoluenes

Results Of Bench-scale Studies

Denitrification Bench-Scale Study

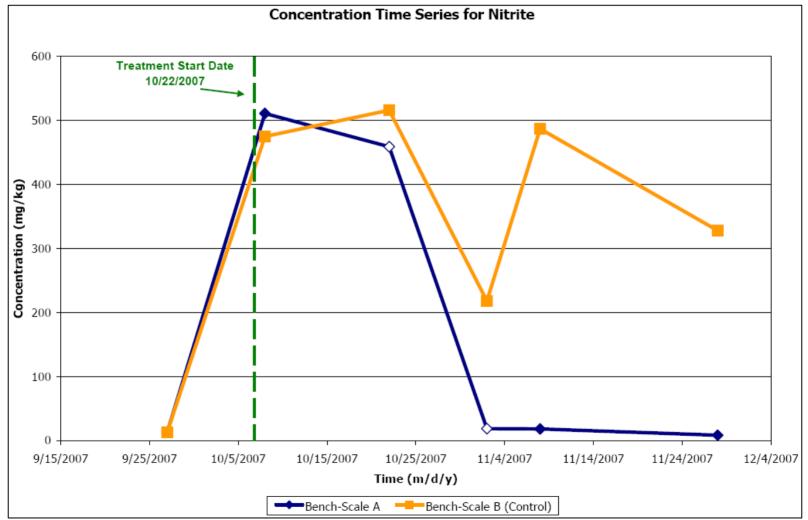
- Evaluate citric acid as an organic substrate to determine its potential to treat elevated nitrate and nitrite concentrations in soil resulting from chemical destruction of TNT and DNT
 - Citric acid was chosen as the organic substrate because it:
 - serves as a carbon source for denitrification bacteria
 - lowers the pH to neutral conditions
- Estimate the time required for treatment and the kinetics of chemical degradation

Bench-Scale Study – Set-Up


- Two soil pan tests containing approximately 4 kg each of soil from contaminated area
- Phase I soil pan tests underwent alkaline hydrolysis to remediate the nitroaromatic compounds in soil
- Once treatment was complete (approximately 2 weeks), the denitrification bench-scale began (Phase II)
- Citric acid waste was added to one of the soil pan tests, denoted as BS-A; no citric acid was added to BS-B (control)
- Citric acid was added and mixed using mixing spoons

Bench-Scale Study – Results

- Both test trials showed a substantial decrease in nitroaromatic compounds
 - Total DNT and 2,4,6-TNT exhibited greater than a 99% percent decrease in concentrations over the course of the two-week treatment
- Nitrate was not formed in significant concentrations compared to baseline results indicating very little oxidation from nitrite to nitrate
- Nitrite concentrations decreased from 511 mg/kg to non-detect levels during the first twelve days
- The degradation rate for nitrite was calculated to be 0.292 day¹


Denitrification Study: Results

TE TETRA TECH

complex world

Denitrification Study: Results

Field Pilot Study Results

- 230 m³ excavated soil in bermed area (~ 30 m by 15 m)
- Designed amounts of alkaline agent and catalyst
- Implemented mixing, moisture, monitoring, and evaluation

<u>coc</u>	<u>Baseline</u> <u>(July 31, 2007)</u>	<u>August 6, 2007</u> (mg/kg)
I,3,5-TNB	5	0.066
2,4-DNT	800	I.6
2,6-DNT	12	I.5
2,4,6-TNT	230	0.64
Amino-DNTs	ND	0.82
Nitrotoluenes	ND	0.48

Field Pilot Study

CLEAR SOLUTIONS

Full Scale Ex Situ Treatment

- Soils excavated and treated within asphalt-lined pond
- 230 m³ increments
- Alkaline and catalytic reagents evenly spread
- Conventional construction equipment
- In-house moisture and mixing design
- pH primary indicator for uniform physical and chemical mixing of chemicals

CLEAR SOLUTIONS

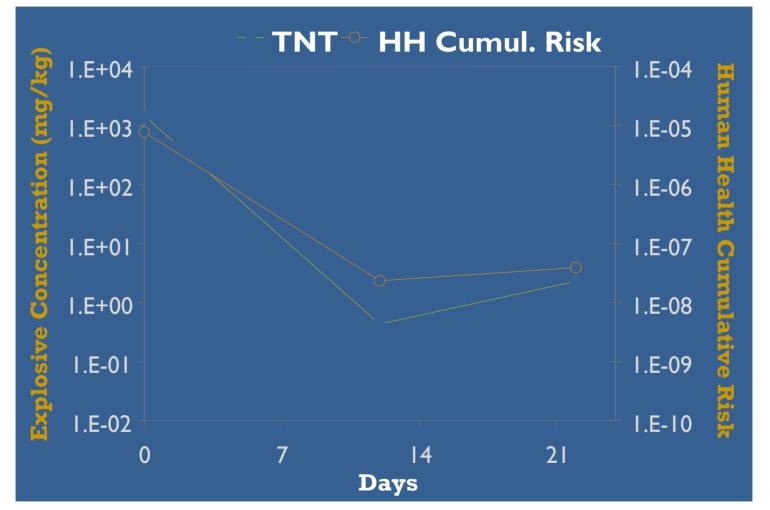
Full Scale Ex Situ Treatment Results

- 86,000 m³ (ex situ) completed treatment (100%)
- 70 tonnes total nitroaromatic mass removed (>94%)
- Treated soils below cleanup targets for DNT (25.4 mg/kg)
 - 42% < 2.54 mg/kg for 2,4-DNT (20x rule)
 - Average 2,4-DNT in remaining piles 6.9 mg/kg

> Technology has been examined for groundwater

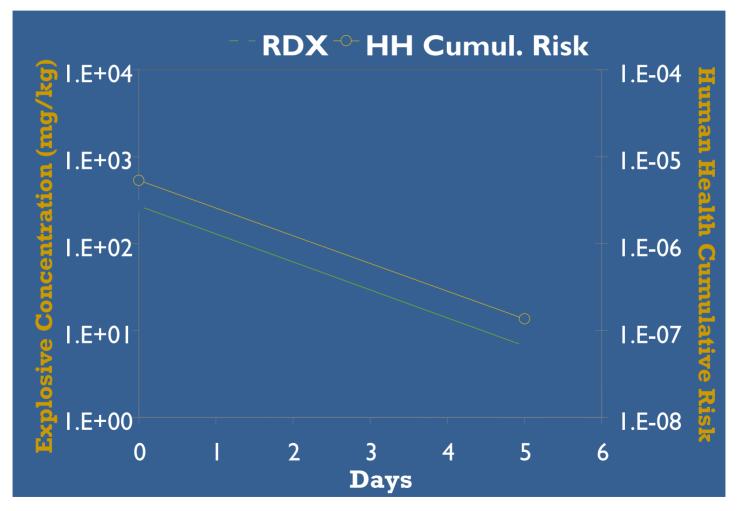
- Remaining contaminated soils were treated in situ
- Results indicate in situ treatment is effective and comparable to ex situ treatment
- To date, 11,500 m³ of contaminated soil has been successfully treated in situ – site has been closed

Second Case Study


> Over 13,000 m³ of soil treated

Summer 2008 – successful demonstration of bench-scale, pilot-scale, and currently full-scale using out technology experience at VOAAP

July – October 2009 – completed and confirmed the treatment of soil in one season



High TNT Concentration 604 KG of TNT destroyed in 21 days

High RDX Concentration 113 KG of RDX destroyed in 5 days

Applications

- Can be applied to other sites
- In-situ vadose zone and saturated zone applications
- Variety of alkaline hydrolytic agents
- Range of application/mixing regimes
- > Application in colder environments
- > Application to other contaminants
- Presence of co-contaminants

complex world CLEAR SOLUTIONS"

