TRISOPLAST (\mathbf{R}) Soil & Groundwater Protection by Polymer Enhanced Mineral Barrier **RemTech Banff 2009** Dipl.-Geol. Mike Naismith

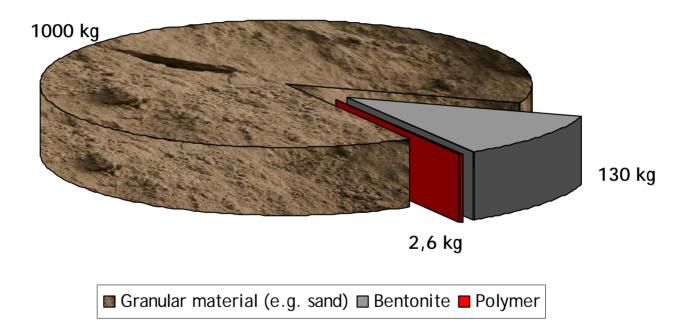
Contents

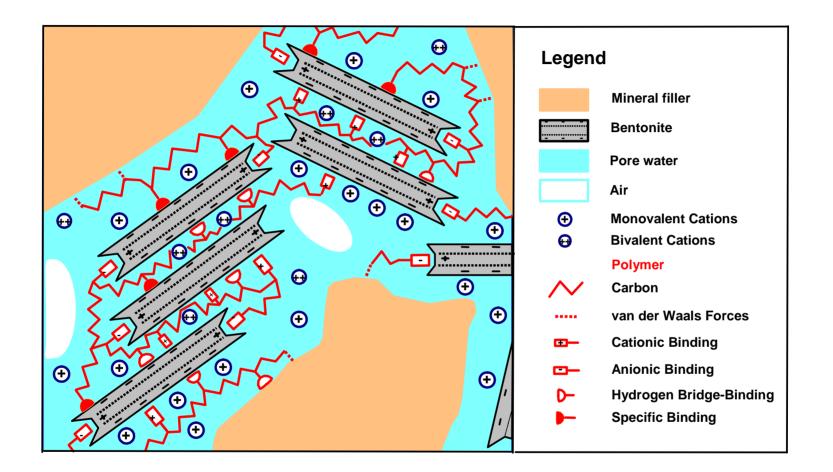
- 1. Introduction Trisoplast®
- 2. Why do we need Innovation? Relevant Fields of Examinations
 - ••• Cation Exchange, Desiccation und Root Penetration (Laboratory & Field Investigations)
 - ••• Shear Strength / Slope Stability
 - ••• Differential Settlement / Deformation
 - Properties / Durability
 - ••• Functional Lifetime / Aftercare Costs
- 3. Conformity with European Directive
- 4. Examples
- 5. Conclusions

Trisoplast developed in the Netherlands

Environmental protection is crucial!

Trisoplast® Mineral Barrier




What is Trisoplast?

Trisoplast is a polymer modified mineral barrier

Trisoplast®: Schematic Presentation of the Interaction between Bentonite und Polymer

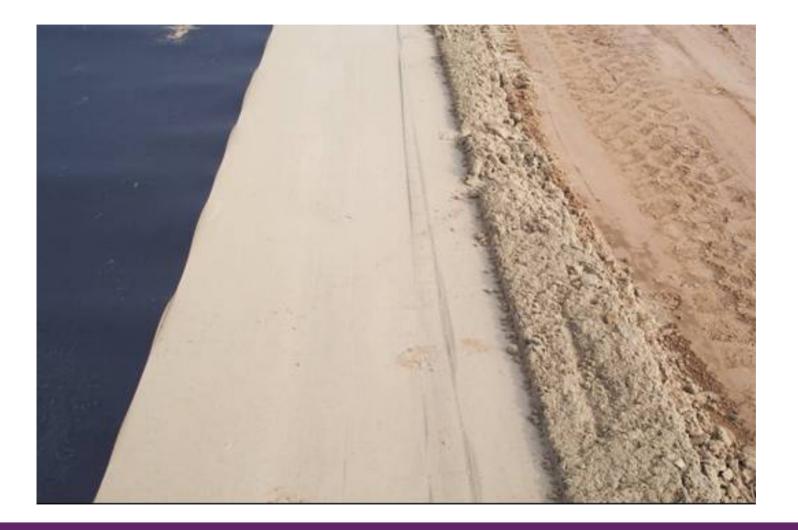
Mobile Mixing plant Setup in Swanscombe, UK

Trisoplast Installation Process

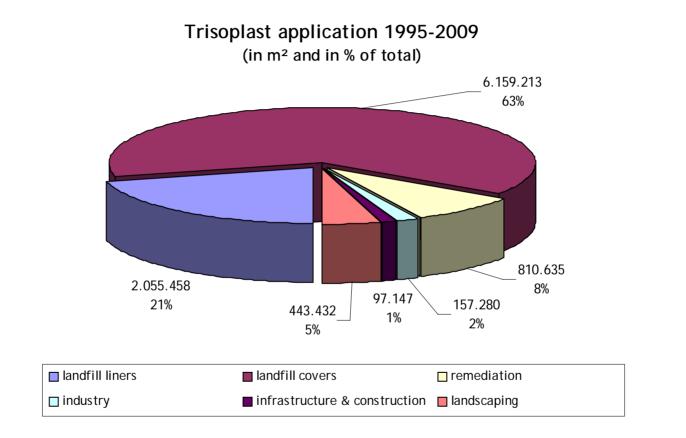
Trisoplast Installation Process

Standard Equipment and Handwork for Small Projects

Compaction with Roller on Slopes



Compaction with Vibrating Plates



Trisoplast[®]: Surface Finish

±10 Million m² of Trisoplast installed

Trisoplast world-wide today

- Argentina
- Belgium
- Bulgaria
- Croatia
- Dubai
- France
- Finland
- Germany

- Ireland
- Italy
- Malaysia
- Mexico
- Portugal
- Romania
- South Africa
- Serbia

- Singapore
 Spain
- Sweden
- The
 - Netherlands
- Ukraine
- United
 Kingdom

Trisoplast[®] is a polymer modified mineral Barrier

••• Produced / installed on site:

- Local personnel
- Local Materials (only polymer delivered from NL)
- Conventional machinery

••• Quality Controlled System:

• (Trisoplast Manual)

••• Know-how, Training and Support from the Netherlands :

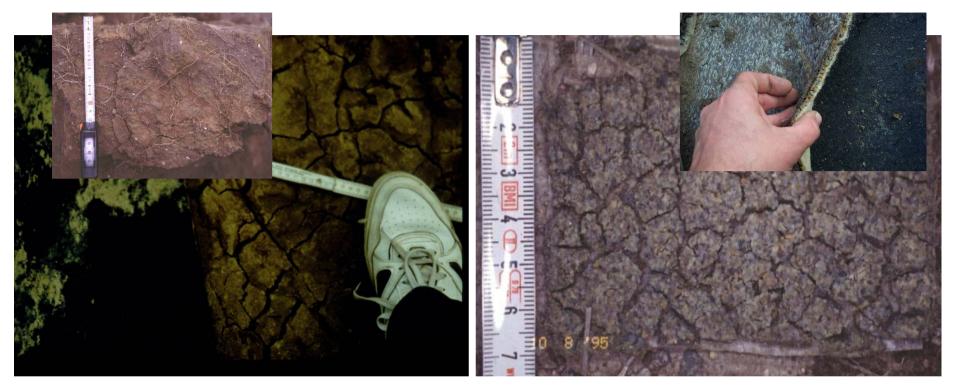
 Field lab equipment and mobile mixing plant can be supplied from NL (for first references)

Properties of Trisoplast[®]

- ••• Sealing performance Factor 100 to 1000 better than EU requirement for regular clay. (kf 0,1 3 x 10-11 m/s versus 1 x 10-9 m/s)
- ••• Strength: Friction like sand and cohesion like clay. Long term slope stability of 1:2 and more can be constructed.
- ••• Deformability: ability to cope with Differential Settlements due to High Plasticity, Self-Healing ability.
- ••• Durability at chemical, biological and physical influences. High resistance to wet/dry cycles, cation exchange.
- ••• Retention of contaminants: 9 cm layer equivalent to the 1 meter natural reference impermeable mineral layer as specified in the EU Landfill directive.

Continuous Research by Independent Institutes

Quality Control Testing Trisoplast®


Percolation rates of different Landfill Barriers <u>at</u> <u>Installation</u>

	Trisoplast		GCL	BES	Geological Barrier / CCL		er / CCL
Barrier thickness d [m]	0.07	0.09	0.01	0.25	1.00	1.00	5.00
Hydraulic conductivity k [m/s]	3 x 10 ⁻¹¹	3 x 10 ⁻¹¹	3 x 10 ⁻¹¹	1 x 10 ⁻¹⁰	1 x 10 ⁻⁷	1 x 10 ⁻⁹	1 x 10 ⁻⁹
Hydraulic gradient i [-]	14.3	11.3	94.0	4.7	1.9	1.9	1.2
Percolation rate q [mm/a]	14	11	89	15	6,086	61	37

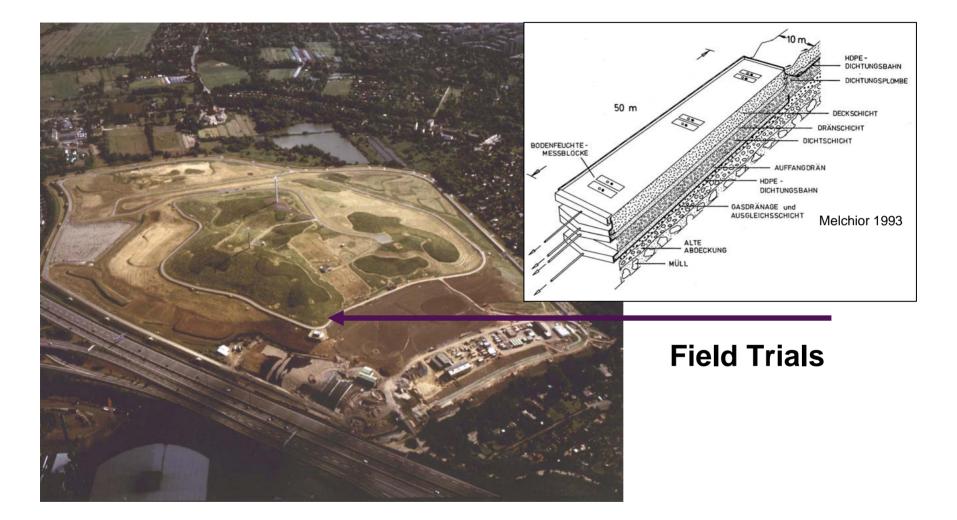
According Darcy (0.3 m hydraulic head, -0.63 m below barrier = field capacity)

Desiccation Damage Clay Dominated Liners

Compacted Clay Liner (CCL)

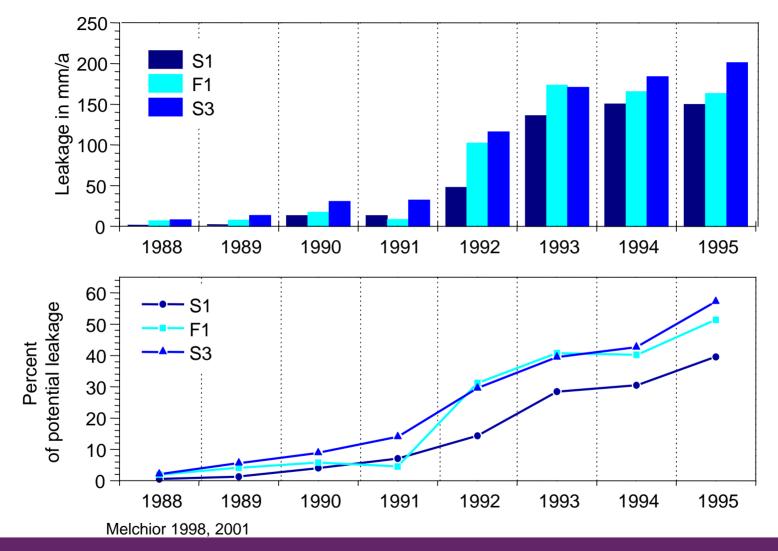
Geosynthetic Clay Liner (GCL)

Melchior October 1995, Excavations Field Trial Georgswerder, Hamburg



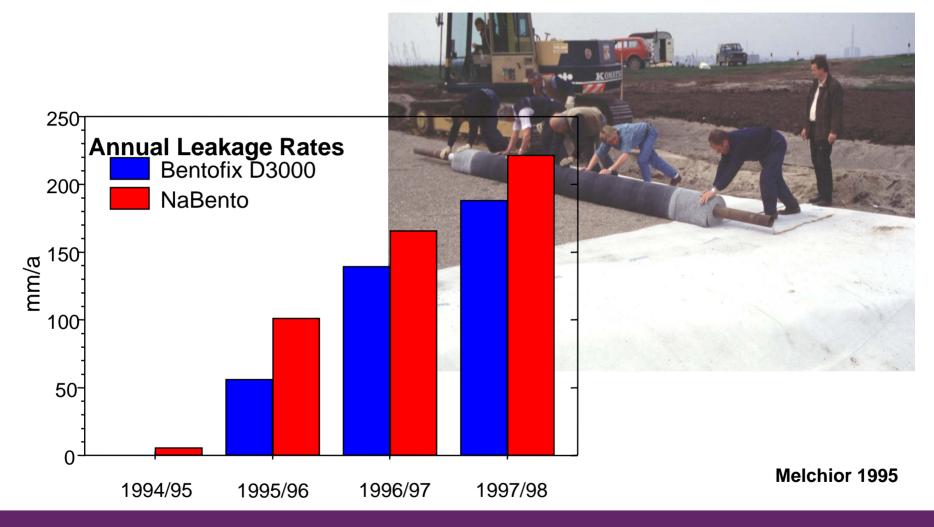
Damage by tools, larger particles or whilst installing the cover materials(Bonaparte and Gross 1990)

Average (studie 1990): 14 holes /ha Good OA/OC: 2 to 3 holes /ha Typical area leak: 1 cm2 Leakage "best practice" liners 200 litres per hectare per day (73 m³/ha/year) 10/10/2002

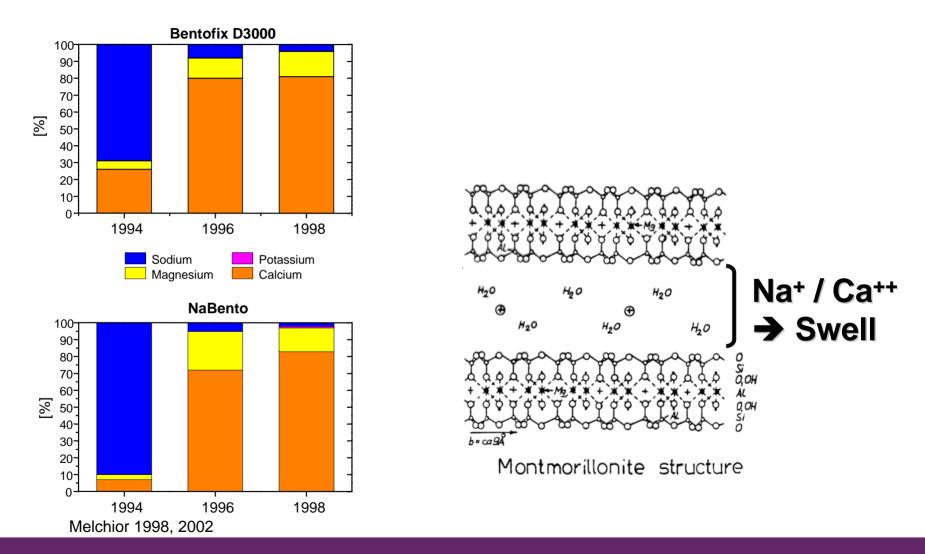


Landfill Hamburg-Georgswerder

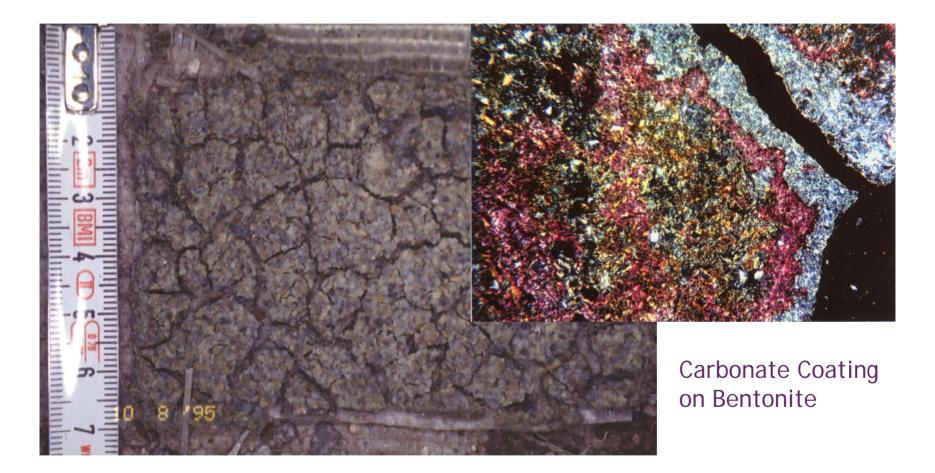
Annual leakage trhough compacted cohesive soll barriers



Field Trial Georgswerder in October 1995

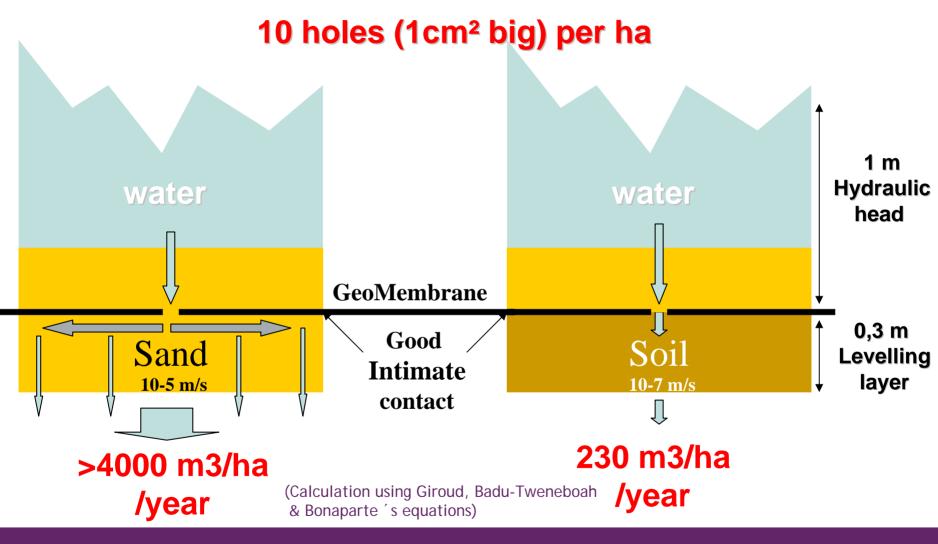


Geosynthetic clay liner (GCL): Field Trial Georgswerder



Cation Exchange in Geosynthetic Clay Liners: Field Test Georgswerder

Carbonate Coating on Bentonite aggregates Geosynthetic clay liner (GCL): Field Trial Georgswerder


Annual percolation rates through four different mineral liners used in a cap

	TRISOPLAST®	GCL	CCL	BES
Barrier thickness d [m]	0.07	0.01	1.00	0.50
Hydraulic conductivity k [m/s] as installed	3 x 10 ⁻¹¹	3 x 10 ⁻¹¹	1 x 10 ⁻⁹	5 x 10 ⁻¹⁰
likely increase factor after 10 to 100 years	1-2	10- 100,000	2- 10,000	2- 100
Percolation rate q [mm/a] fresh / after 10 years	8 / 8-16	52/ >400	35/ 70->400	26/ 52->400

(calculation using Darcy's equation assuming a total hydraulic head of 1 m (0.5 m suction tension, 0.5 m hydraulic head above the mineral liner) over a period of 200 days directly after installation and after 10 - 100 years (based on experiences and independent research results)

Percolation rates Geomembrane

Annual Percolation rates through a geomembrane

Intimate contact to subgrade and permeability subgrade of high influence on percolation rates:

GM= Geomembrane	GM over 0.3 m soil @ 10 ⁻⁷ m/s	GM over 0.3 m soil @ 10 ⁻⁶ m/s	GM over 0.3 m soil @ 10 ⁻⁵ m/s	
good intimate contact (not likely)	23	127	>400	
poor intimate contact 121		>400	>400	

Percolation rates through 10 round holes (1cm² big) per ha in a geomembrane (calculation using Giroud, Badu-Tweneboah & Bonaparte 's equations and a total hydraulic head of 1m (0.5 m suction tension, 0.5 m hydraulic head above membrane) overlying a 0.3 m thick levelling layer of different permeability

Leachate Treatment Cost

Formula T = I*(1+R)^a Total Nett Value (T)	TRISO	PLAST		GCL	
Inflation	3,0%		3,0%		
Installation Cost per m²	10		5		
Instalation costs (1)	200.000,00		100.000,00	€	
Interest Rate (R)	4,50%		4,50%		
Surface Area	20.000,00		20.000,00		
Lechate in mm Lechate Treatment Cost	10,00	mm	200 10,00		
	10,00	5 /11	10,00	ΦIII	
Yearly Lechate	200	m ³	4.000	m ³	
Yearly Lechate Treatment Cost	2.000	€	40.000	€	
Year	Direct Cost Trisoplast	Interest gain Trioplast	Direct Cost GCL	Morecosts GCL	Morecoast G CL / m²
0	200.000,00	0	100.000,00	-100.000€	-5,00 €
1	202.060,00		141.200,00	-65.360€	-3,27 €
2			183.636,00	-27.987€	-1,40 €
3			227.345,08	12.277€	0,61 €
5			318.736,40	102.153€	5,11 €
10			572.311,83	390.192€	19,51 €
30			2.060.107,13	3.064.715€	153,24 €
50	432.361,55	6.911.953,80	4.747.230,93	11.226.823€	561,34€

(simplified fictive Prices!)

Aftercare Costs (if allowed for right from the startexcluding the reoccurring earthworks/excavation!!!)

		TRISOPLAST		GCL	
Formula T = I*(1+R)^a Total Nett Value (T)					
Average Replacement Periods (a) Inflation			Years		Years
Installation Cost per m² Instalation costs (1)		10 € 200.000.00 €		<mark>5</mark> € 100.000,00€	
Interest Rate (R)		4,50%	2	4,50%	< C
Surface Area		20.000,00	m2	20.000,00	m2
	e of Barrier year)	Real Installation Costs (€)	Required Individual Investment today (€)	Required Total Investment today (€)	System Cost (€/m²)
0 105	100 200	200.000 3.843.726		200.000 247.111	10,00 12,36

	Replacement Period (year)	Lifetime of Barrier (year)	Real Installation Costs (€)	Required Individual Investment today (€)	Required Total In vestment today (€)	System Cost (€/m²)
- Г	0	15	100.000	100000	100000	5,00
	15	30	155.797	80503	180503	9,03
51	30	45	242.726	64808	245311	12,27
бl	45	60	378.160	52173	297484	14,87
	60	75	589.160	42001	339484	16,97
	75	90	917.893	33812	373296	18,66
- 1	90	105	1.430.047	27220	400516	20,03
	105	120	2.227.966	21913	422429	21,12
E	Maximum Cost Eternity				512.741	25,64

Total Cost Saving Trisoplast

251.113 €

Saving per m²

261.628

12,56 €

13,08

(simplified fictive Prices!)

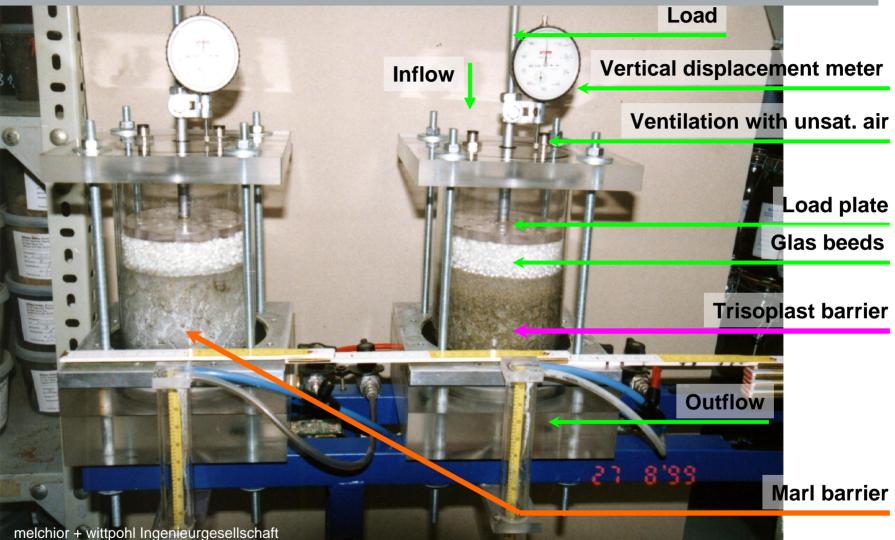
Trisoplast

Maximum Cost Eterni

Gain of Void Space

Price of Waste:	100	€			
Size of Project	20.000 00 m ²				
Denisty of Waste	1 t/m³				
	Trisoplast	Trisoplast +Attenuation Layer	Clay		
Thickness	0,09 m	0,50 m (0,09 m+0,41 m.)	1 m		
gained Voidspace in m ^a	0,91	0,50	0,00		
cost savings in € per m²	91,00	50,00	0,00		
Total cost saving in €	1.820.000 €	1.000.000 €	0,00		

(simplified fictive Prices!)


Root Penetration Experiments with Barley on Trisoplast and the Georgswerder Cohesive Soil Barrier Melchior et al. 2001

Percolation Test Cells

6 year without damage

••• Clays and GCLs: Strong influence of drying cycles

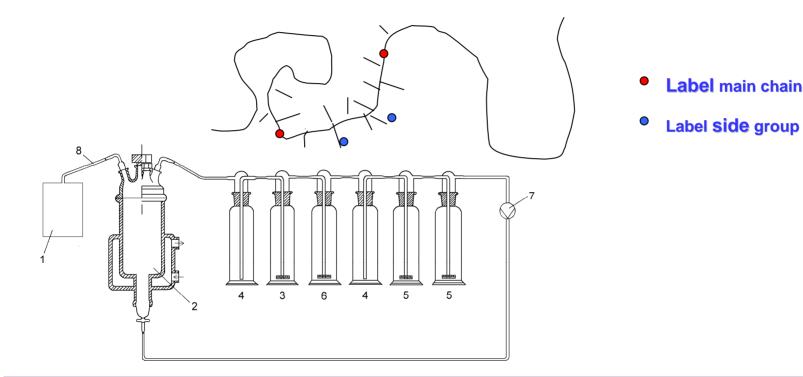
- Glacial Marl (18% clay) fails completely after one drying cycle, visual cracks.
- Schlieper Ton (36% clay): extremely high initial permeability after two cycles. Original
 permeability never reached again.
- Both Calcium and 7kg Na-bentonite GCL have extremely high initial permeability after drying cycles. After saturation (4 - 10 weeks) factor remains 10 to 100 higher than initially. Na-bentonite mat shrinks 5 mm and loses swelling capacity.
- ••• **Trisoplast:** Saturation and desiccation processes take place extraordinary slowly. Low permeability remains unaffected after several drying cycles (even after 5 years testing) with desiccation stresses of up to 1500 hPa.

TRISOPLAST® : PERMEABILITY AFTER DEFORMATION

	Deformatio n (%)	Perm (x 10 ⁻	neability ⁻¹⁰m / s)
	$\left(\frac{x_1}{x_0}-1\right) x 100$	Saturated	Unsaturate d
	0	0,06	
Δh	1	0,09	
	2	0,11	
	3	0,16	
	5	0,23	
	7,5	0,21	0.60
	10	0,21	0,60
			0,37

Deformation without damage

BOELS & VAN DER WAL (1999)


Shear characteristics of Trisoplast

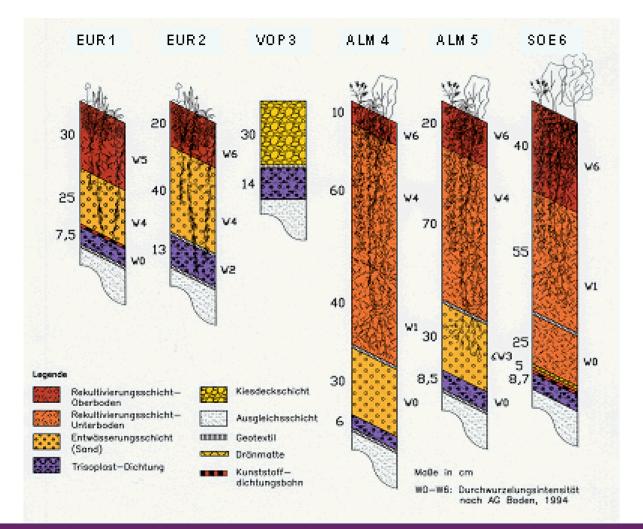
Recommendation for slope stability calculations for preliminary design planning for landfill covers according to AK Trisoplast, 2002

CONSTRUC	CONSTRUCTION PHASE		LONG TERM SHEAR PARAMETERS		
State of failure	State of sliding	State of failure	State of sliding		
$\varphi' = 35^{\circ}$	φ′r = 30°	$\phi' = 30^{\circ}$	$\varphi'r = 30^{\circ}$		
c' = 20 kN/m ²	c' = 10 kN/m ²	c' = 10 kN/m ²	c' = 10 kN/m ²		

Biological and Chemical Stability by C14-Labelling Method r. Wienberg Umwelttechnisches Labor

Main Conclusion: \rightarrow These highly accurate tests confirmed that the actual polymer is marginally or totally non-degradable for a very long time even under very extreme conditions

Excavations Trisoplast sites (build 1995 - 1996)


2001: Alterra (Uni Wageningen NL) and Melchior & Wittpohl (Hamburg)

- ••• Investigation of any negative influences caused by:
 - Roots
 - Desiccation
 - Cation Exchange
 - Cracking
 - Aggregate Forming
 - k-value changes

Excavations Trisoplast Seals in The Netherlands (September 2000)

Braambergen, Almere (130.000 m2)

VBM Rotterdam

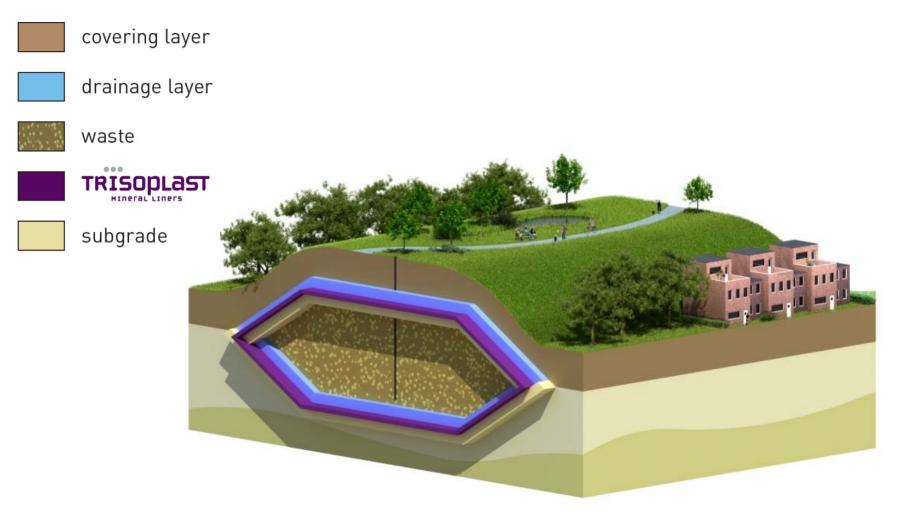
VBM Rotterdam

Trisoplast Barrier (no Geomembrane)

Trisoplast Barrier (no Geomembrane)

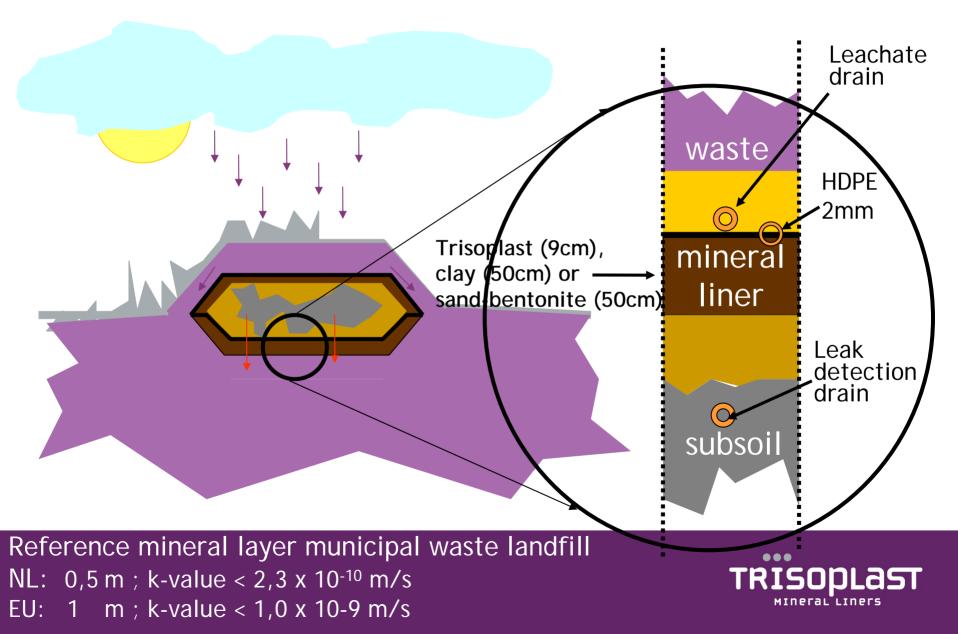
Results of the Excavations:

- ••• All the excavated Trisoplast seals were intact.
- ••• The permeability remained unchanged at its low level (2,2 to 3,1 *10-11 m/s).
- ••• No crack formations or other irregularities could be observed.
- ••• The Trisoplast layers were homogeneous, moist and the plasticity was unchanged.
- ••• Even the layers protected by only very thin cover soils and roots penetrating the layer showed no damage, a good placidity and had a low permeability.

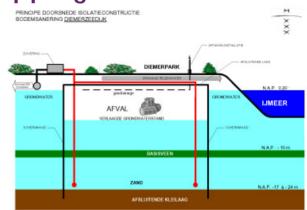


Acceptance of Trisoplast/Compliance with the European Directive

- ••• 0.07 m of Trisoplast can be regarded as equivalent to much thicker Clay (e.g. Germany: 0.5 m at 1 * 10-10 m/s)
- •••• 0.09 m Trisoplast + 0.41 m of an existing Subsoil generally offer a better protection than the 0.5 m thick artificially reinforced Geological Barrier as specified in the European Directive
- Trisoplast has already been approved as Mineral Barrier for Landfill Capping and Basal Lining in a number of European & Non-European Countries



Landfills and Remediation


Engineered barriers for Dutch landfills (e.g. basal liners)

1998-2001

Clean up and Isolation Constructions 155 Mio € Estimation of full modern liner and capping construction max 40 Mio €

Eternal aftercare for pumping system

Landfill bottom liner Hengelo, the Netherlands 2007

Basal Lining Landgraaf 1/2 (60.000 m2)

Basal Lining Landgraaf 2/2 (60.000 m2)

Landfill Cap

Trisoplast[®] handling by -10° Celsius

Capping Zevenbergen (215.000 m2)

Trisoplast® Landfill Capping Netherlands

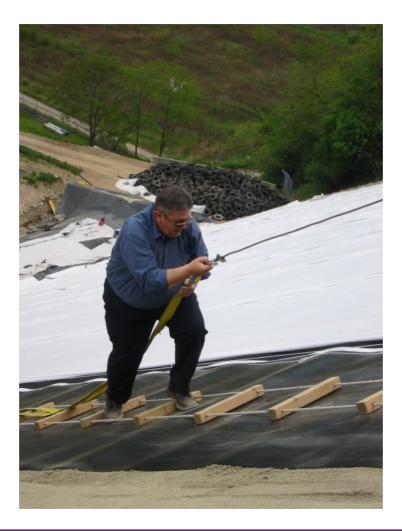
VBM Rotterdam: Re-capping 10 year old BES with Trisoplast

Capping Frizzi-Au, Italy 12.500 m²

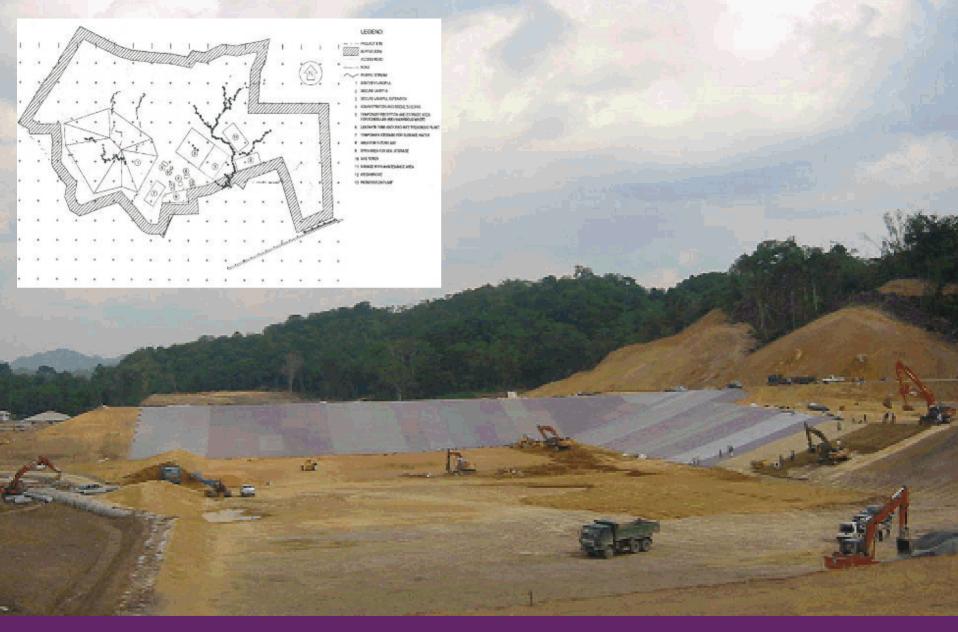
Basal Lining Italy Steep Slope Application

Slope Angle: 1:1.5 = 34

Slope length: 65 mtr



Basal Lining with Trisoplast, Landfill Frizzi Au 2005



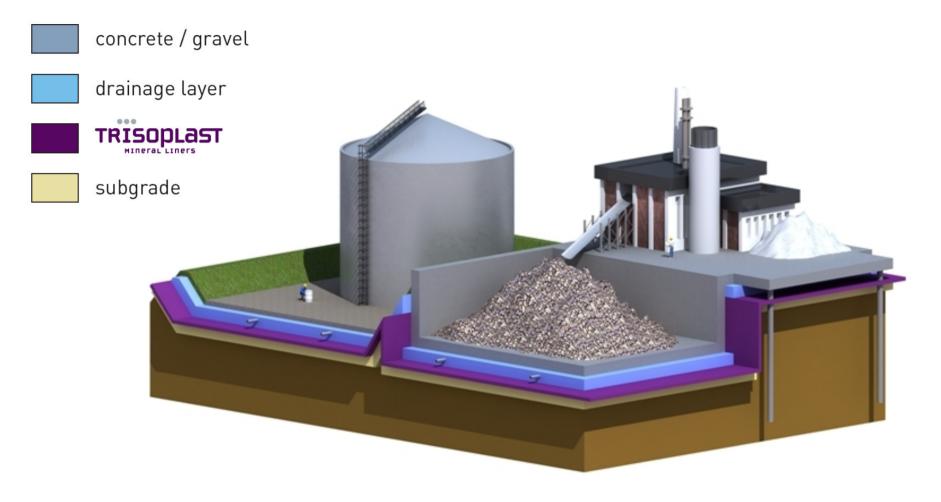
Steeper than you can walk!!!

Landfill bottom liner Kuching, Sarawak, Malaysia 2003

Trisoplast[®] using Foundry Sand

Trisoplast[®] Davor Landfill, Croatia

Tailing ponds at Baia Mare project Maramures, Romania 2004



Tailing ponds at Baia Mare project Maramures, Romania 2004

Industry

Tank park

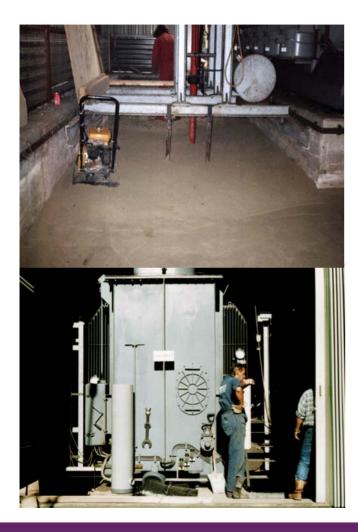
Liner for (benzene) tank park Shell Singapore 2008

Liner for (benzene) tank park Shell Singapore 2008

Remediation Buyskade, capping of polluted area Amsterdam, Netherlands 1996

Remediation former gas plant, capping polluted area + pond construction Westergasfabriek Amsterdam, Netherlands 2004

Trisoplast[®] for Industrial Sites



Trisoplast® for Industrial Sites



Infrastructure and Construction

Highway construction Oss Paalgraven, Netherlands 2005-2006

Highway construction Oss Paalgraven, Netherlands 2005-2006

Canal Orléans, France 2007

Canal Orléans, France 2007

Landscaping

covering layer

drainage layer

Private pond Tanques, France 2006

Ponds Golf course De Scherpenbergh Lieren, Netherlands 2005

Ponds Golf course De Scherpenbergh Lieren, Netherlands 2005

Ponds Golf course Prise d'eau Tilburg, Netherlands 2007

Ponds Golf course Prise d'eau Tilburg, Netherlands 2007

Ponds Golf course Prise d'eau Tilburg, Netherlands 2007

Ponds Spielberk Office Centre Brno, Czech Republic 2006

Ponds Spielberk Office Centre Brno, Czech Republic 2006

Ponds in public park Thiais, France 2007

Ponds for Recultivation at Former Mining Area Drocourt, France 2007

Ponds for Recultivation at Former Mining Area Drocourt, France 2007

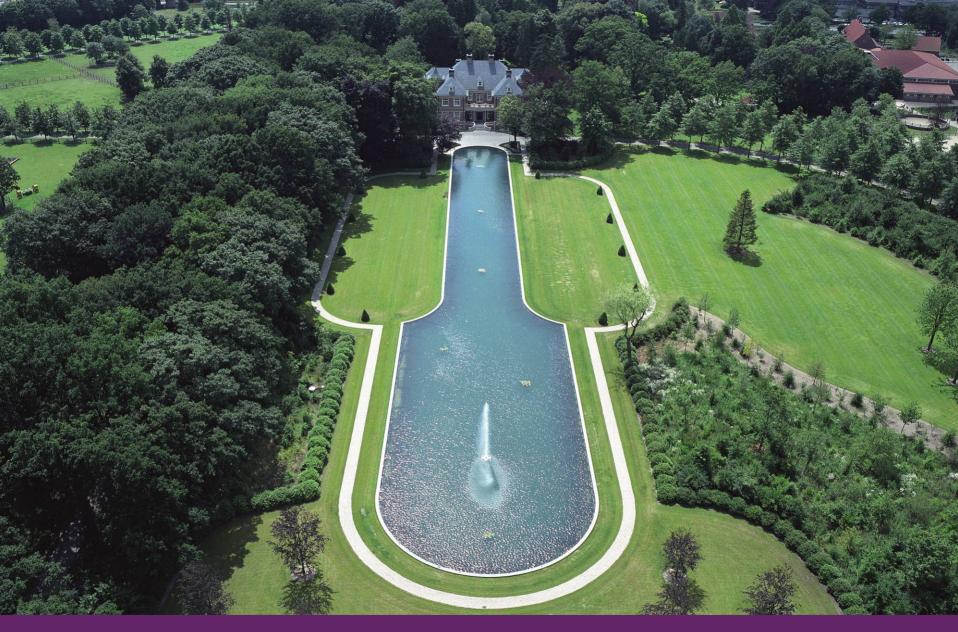
Ponds for recultivation at former coal mining area Drocourt, France 2007

Ponds for Recultivation at former Coal Mining Area Drocourt, France 2007

Ponds for Olympics 2012 Development Swanscombe, London, UK 2008. 170.000 m2

Private pond Nuenen, Netherlands, 2006

Private Pond Nuenen, Netherlands, 2006


Private Ponds Duysels Hof Estate Duizel, Netherlands 2002-2003

Private Ponds Duysels Hof Estate Duizel, Netherlands 2002-2003

Private ponds Duysels Hof Estate Duizel, Netherlands 2002-2003

Private Ponds Duysels Hof Estate Duizel, Netherlands 2002-2003

Private pond Kaatsheuvel, Netherlands 2002

Pond Crayenstein estate Vught, Netherlands 2005

Ponds at Fauna Overpass De Borkeld Rijssen, Netherlands 2003

Summarising Main Advantages Trisoplast:

- Sealing like the highest quality of clay, self-healing ability
- Strength like sand (durable slopes up to 1:1.5)
- Flexibility like chewing gum, no stress cracking
- Durability robust natural materials improved by modern polymer technique
- Quality simple installation of homogeneous mixtures, simple sealing to structures and penetrations, not damaged by sharp particles

Thank you

top quality below

For more information, please contact us directly or visit our website www.trisoplast.com

