

EVALUATION OF THE MICROTOX® TOXICITY TESTING SYSTEM: DOES IT BELONG IN THE ENVIRONMENTAL INDUSTRY?

DR. ERIK J. MARTIN, PH.D., DABT

OCTOBER 15, 2009

BIOGRAPHY

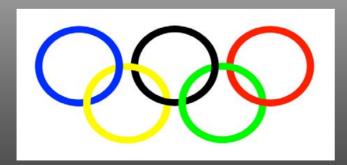
Dr. Erik J. Martin, Ph.D., DABT

Technical Director, Toxicology & Health Sciences

- Ph.D. in Toxicology from Queen's University, Kingston, ON.
- Diplomat of the American Board of Toxicology (DABT).
- Expertise inc. environmental and mechanistic toxicology, and HHERA.
- Have conducted health / risk assessments across Canada and the US as well as internationally.
- Have experience with many different chemicals including PAHs, dioxin/furans, VOCs, metals, and PHCs.

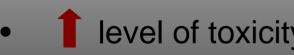
BACKGROUND

- ERCB *Directive 50* identifies Microtox as the standard for evaluating the toxicity of drilling products and wastes.
- Evaluated Microtox toxicity testing system as part of a larger study to assess drilling muds at closed sumps in a Western Asia location.

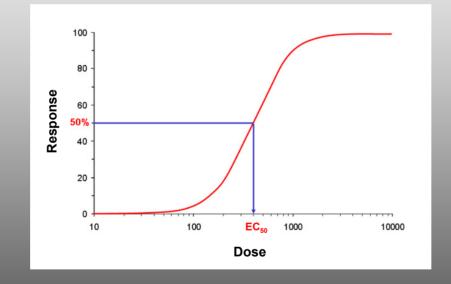

Three Phases

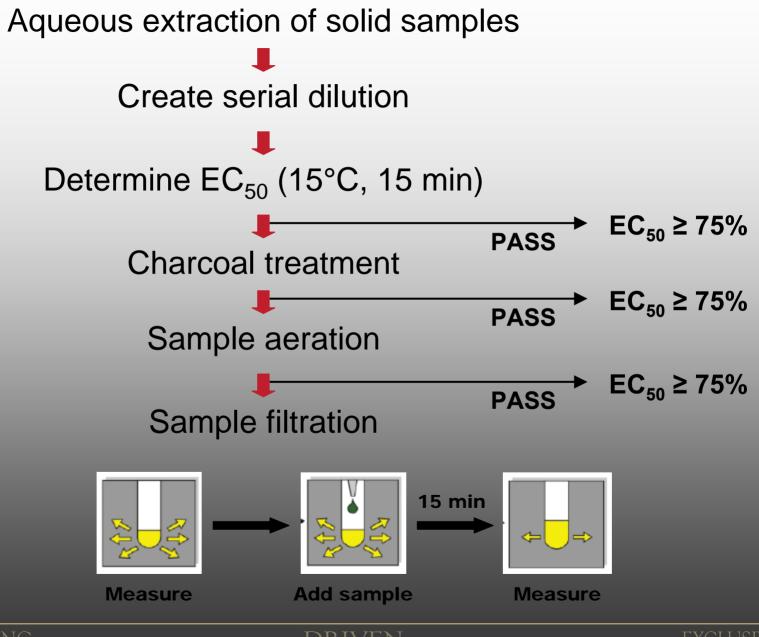
- Phase 1 Laboratory precision
 - Baseline EC₅₀ values for SRMs
- Phase 2 Effects of time and temperature
- Phase 3 Microtox on 60 sump samples

MICROTOX[®] ORIGIN


- Microtox originally used to monitor drinking water supplies where accidental or deliberate contamination is a concern.
 - > 1984 Los Angeles Olympics
 - > 2000 Democratic National Convention
 - > Pentagon, Washington, DC following 9/11

MICROTOX®


- Microtox[®] toxicity testing technology is a biosensor-based measurement system for toxicity.
- Microtox test systems are based on the use of lacksquareluminescent bacteria (Vibrio fischeri) which produce light as a by-product of normal metabolism.
- Any inhibition of normal metabolism exposure to toxic substance - results in a decreased rate of luminescence.



• \mathbf{I} level of toxicity = \mathbf{I} inhibition of light production.

TERMINOLOGY

 EC₅₀ - Effective Concentration (sample conc.) that causes a 50% reduction in light emission.

DEFINING

DRIVEN

EXCLUSIVE

PHASE 1

 Seven standard reference material (SRM) samples sent to the laboratory for Microtox testing.

Purpose:

- 1. Test laboratory precision
- 2. Establish baseline EC_{50} values laboratory accuracy
- Baseline EC₅₀ values necessary for evaluation of SRM samples included with samples from Western Asia.

PHASE 1 RESULTS

SRM ID	Original P/F	EC50	Charcoal P/F	EC50	Filtration P/F	EC50
DM-1-003*	Fail	0.76	Fail	0.99	Pass	>81.9
DM-1-043*	Fail	1.22	Fail	3.59	Pass	>81.9
DM-1-068*	Fail	1.83	Pass	>81.9	na	na
DM-1-107	Fail	0.40	Fail	2.13	Pass	>81.9
DM-1-147*	Fail	0.48	Fail	6.39	Pass	>81.9
DM-1-187*	Fail	1.65	Fail	11.6	Pass	>81.9
DM-1-225	Fail	1.13	Fail	5.07	Pass	>81.9

* Samples run in different laboratory

PHASE 1 RESULTS

- One anomalous sample (i.e., DM-1-068). Here, toxicity appears to be related to hydrocarbons.
- Explanation:
 - "...failed to run a proper viability test on the bacteria..."
- For all other samples, toxic constituents appear to be adsorbed onto the filtering media.
 - Associated with suspended solids?
 - Offers little information re: characterization of the toxic component(s).

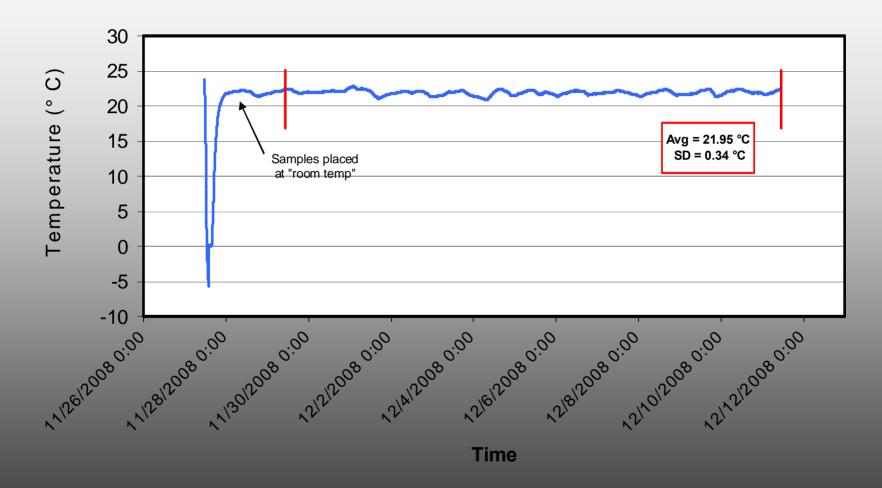
PHASE 1 RESULTS – PRECISION & ACCURACY

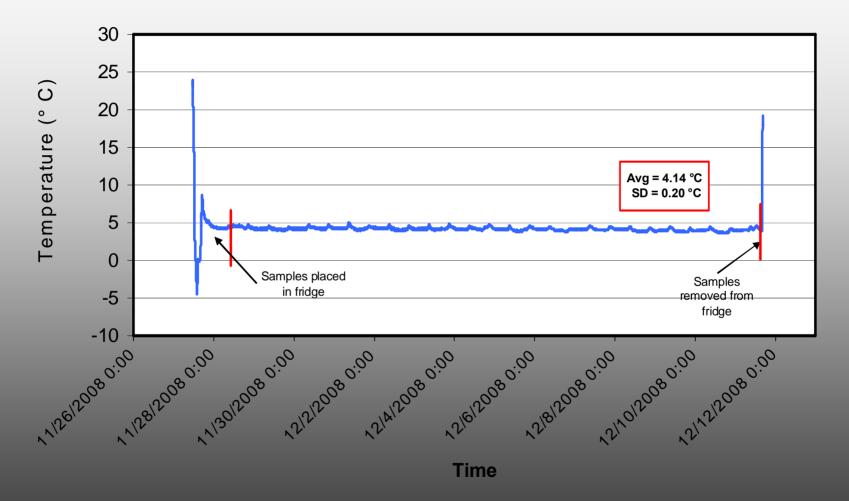
Baseline EC₅₀ • Original Microtox Assay

- Range: 0.4 1.65 %
- Mean: 0.94 %
- 95% UCL: 1.44 %
- SD: 0.48
- Charcoal Treatment
 - Range: 0.99 11.6 %
 - Mean: 4.96 %
 - 95% UCL: 8.94 %
 - SD: 3.79

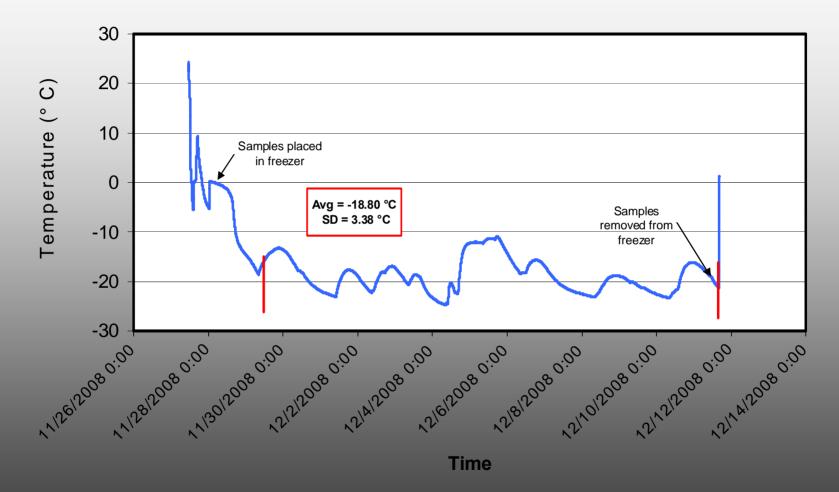
PHASE 2

- Study to determine the effects of time and temperature on results generated using the Microtox test system.
- Particularly important for our field investigation as samples were shipped from Western Asia to Canada.




PHASE 2 - METHODOLOGY

- Fifteen SRM soil samples sent to the lab for Microtox toxicity testing:
 - five samples stored at 22°C (room temperature; RT)
 - five stored at 4°C (fridge)
 - five stored at -20°C (freezer)
- A thermochron was stored with each group of samples to log the temperature over the course of the study.
- On days 1, 3, 5, 7 and 9, one soil sample stored at RT, 4°C and -20°C underwent Microtox testing.


PHASE 2 RESULTS THERMOCHRON DATA FOR RT

PHASE 2 RESULTS THERMOCHRON DATA FOR 4°C

PHASE 2 RESULTS THERMOCHRON DATA FOR -20°C

PHASE 2 RESULTS ROOM TEMPERATURE

	Day 1	Day 3	Day 5	Day 7	Day 9
SRM ID	DM-1-009	DM-1-015	DM-1-012	DM-1-021	DM-1-018
Original Microtox	Fail	Fail	Fail	Fail	Fail
Charcoal Microtox	Fail	Fail	Fail	Fail	Fail
Aeration Microtox	Fail	Fail	Fail	Pass	Pass
Filtration Microtox	Pass	Pass	Pass	na	na

PHASE 2 RESULTS ROOM TEMPERATURE

- Results for days 1, 3 and 5 are the same as baseline.
- Days 7 and 9, sample extracts pass following aeration.
- In toxicity following aeration with O₂ generally indicates that toxic components can be oxidized (and rendered less toxic), volatilized, or degassed.

Rationalization of Results

- Toxic components are more readily oxidized over time?
- Aeration on days 1, 3 & 5 insufficient to rid of all VOCs, but aeration + volatilization is sufficient by days 7 & 9?

PHASE 2 RESULTS FRIDGE, 4°C

	Day 1	Day 3	Day 5	Day 7	Day 9
SRM ID	DM-1-010	DM-1-013	DM-1-019	DM-1-016	DM-1-022
Original Microtox	Fail	Fail	Fail	Fail	Fail
Charcoal Microtox	Fail	Fail	Fail	Fail	Pass
Aeration Microtox	Fail	Fail	Fail	Fail	na
Filtration Microtox	Pass	Fail*	Fail**	Pass	na

* Duplicate passed; ** EC₅₀ = 58.5 (Pass at >81.9)

PHASE 2 RESULTS FRIDGE, 4°C

- Results for days 1 and 7 are the same as baseline.
- For day 3, the duplicate sample passed the Microtox test following filtration.
- For day 5, **no** sample extracts passed the Microtox test.
- For day 9, the sample extract passed the Microtox test after charcoal treatment.

Rationalization of Results

 Combination degradation + charcoal sufficient to cause sample to pass?

PHASE 2 RESULTS FREEZER, -20°C

	Day 1	Day 3	Day 5	Day 7	Day 9
SRM ID	DM-1-011	DM-1-017	DM-1-023	DM-1-014	DM-1-020
Original Microtox	Fail	Fail	Fail	Fail	Fail
Charcoal Microtox	Fail	Fail	Fail	Fail	Fail
Aeration Microtox	Fail	Fail	Fail	Fail	Pass
Filtration Microtox	Pass	Pass	Fail*	Pass	na

PHASE 2 RESULTS FREEZER, -20°C

- Results for days 1, 3 and 7 are the same as baseline.
- For day 5, **no** sample extracts passed the Microtox test. However, after filtration the $EC_{50} = 66.1$ (Pass at >81.9).
- For day 9, the sample extract passed the Microtox test after aeration.

Rationalization of Results

- Toxic components are more readily oxidized over time?
- Aeration on days 1, 3 & 5 insufficient to rid of all VOCs, but, aeration + volatilization is sufficient by day 9?

PHASE 2 CONCLUSIONS

General Trends

- *Effect of time* by day 7 to 9 following the start of the study, Microtox results appeared compromised.
 - .:. Field samples should be analyzed within 7 to 9 days of sample collection.
- Effect of temperature at RT samples appeared compromised at day 7 while for -20°C samples appeared compromised at day 9.
 - ∴ Field samples should be kept as cold as possible.

PHASE 3

• Sixty sump samples were collected from Western Asia and subjected to the Microtox toxicity test.

PHASE 3 RESULTS

- All sump samples collected either passed the original Microtox test or passed after charcoal treatment.
 - : either non-toxic or toxicity associated with hydrocarbons.
- General trend where samples collected from sumps receiving hydrocarbon-based muds contained the highest levels of PHCs and failed the Microtox test.

Interesting find:

Charcoal treatment caused samples (max TPH = 87,200 mg/kg) to pass Microtox, but not SRMs (average TPH = 90,659 mg/kg) ∴ PHCs not driving SRM toxicity?

RESULTS FOR SRMS SUBMITTED WITH SAMPLES FROM SITE

SRMs submitted with samples from Western Asia had similar Microtox results as baseline SRMs.

SRM ID	DM-1-025	DM-1-168	DM-1-211	
Original Microtox	Fail	Fail	Fail	
Charcoal Microtox	Fail	Fail	Fail	
Aeration Microtox	Fail	Fail	Fail	
Filtration Microtox	Pass	Fail*	Pass	

* EC₅₀ = 35.2 (Pass at >81.9)

ACCURACY & PRECISION

Samples from Site

- Original Microtox Assay
 - Range: 0.28 3.39 %
 - Mean: 1.93 %
 - 95% UCL: 5.81 %
 - SD: 1.56
- Charcoal Treatment
 - Range: 0.35 4.7 %
 - Mean: 1.97 %
 - 95% UCL: 7.88 %
 - SD: 2.38

Samples from Baseline Study

- Original Microtox Assay
 - Range: 0.4 1.65 %
 - Mean: 0.94 %
 - 95% UCL: 1.44 %
 - SD: 0.48
- Charcoal Treatment
 - Range: 0.99 11.6 %
 - Mean: 4.96 %
 - 95% UCL: 8.94 %
 - SD: 3.79

SUMMARY

- Based on Phase 2 SRM study, samples should undergo Microtox testing within 7 days of collection, and should be kept cold en-route to the laboratory.
- Microtox can be useful as a screening tool, however:
 - Need to follow protocols closely
 - Laboratory data should be closely scrutinized
 - SRMs can be used to ensure laboratory accuracy
- The Microtox assay provides very little information concerning the identity of toxic components.

QUESTIONS? RIII 21 E 엄

DEFINI

TOXICITY ASSAYS

• Trout

- Pro: higher organism, potentially 'real' receptors
- Con: lengthy testing period, extensive storage/living area, \$\$
- Earthworm Assay
- Daphnia (water fleas)
 - Pro: short test (7-days), validated protocols, sensitive
 - Con: labour intensive, poor understanding of health/survival requirements, fragile organisms

Fathead minnows

- Pro: 7-day test method validated by US EPA
- Con: fragility may lead to shock/death when exposed to 'nontoxic' samples.
- Terrestrial plants

PETROLEUM HYDROCARBON CONTENT OF SRMS

	F1	F2	F3	F4	ТРН
DM-1-004	100	34,300	56,000	2,940	93,340
DM-1-044	110	31,500	51,200	2,450	85,260
DM-1-069	100	33,100	54,000	2,520	89,720
DM-1-108	110	33,100	54,000	3,680	90,890
DM-1-148	110	34,900	57,000	2,790	94,800
DM-1-188	90	35,300	57,700	2,650	95,740
DM-1-226	100	31,400	51,200	2,160	84,860
Average	102.9	33,371	54,443	2,741	90,659

Units are mg/kg