New Approaches and Tools for Evaluating LNAPL Mobility

Remtech 2009 October 14-16, 2009 Banff, Alberta

Dr. Ian Hers Golder Associates Ltd. Mark Malander, ExxonMobil Environmental Services, Peter Miasek, Imperial Oil

Presentation Outline

- LNAPL Management Paradigm
- LNAPL Basics
- LNAPL Distribution
- LNAPL Movement
- LNAPL Models
- Lines of Evidence Approach for Evaluation of LNAPL Mobility

LNAPL Management Paradigm

LNAPL Management Paradigm

Residual Saturation

LNAPL Saturation (S₀)

Fraction of pore space occupied by LNAPL

Residual LNAPL Saturation (Sor)

Saturation at which NAPL becomes discontinuous and is immobilized by capillary forces under ambient groundwater flow conditions" (Mercer and Cohen, 1990).

Wetting

Phase with smaller contact angle preferentially covers the surface and is called the wetting phase; is a function of the interfacial tension

NAPL-water system: Water is wetting,
 NAPL is non-wetting

LNAPL Movement in Water-wet Soil Pores

LNAPL will only move into water-wet pores when entry pressure (resistance) is overcome

LNAPL Movement into Waterwet Soil Pores

Capillary pressure or head that must be overcome for LNAPL to enter water-wet pores is called **Displacement Head**

$$h_d = \frac{2\sigma\cos\phi}{r(\rho_W - \rho_o)g}$$

- h_d proportional to wetting fluid contact angle, water-LNAPL interfacial tension and LNAPL density
- h_d inversely proportional to pore radius

Key Point: More difficult for LNAPL to move into fine-grained soil (small pore radius)

Water Retention Curves for Different Soil Types

Key Point: More difficult for water to be displaced from fine-grained soils

Vertical LNAPL Distribution

•LNAPL penetrates below water table

•LNAPL and water coexist in pores

Vertical LNAPL Distribution from Capillary Pressure

Key Point: Vertical LNAPL saturation is variable, some LNAPL is present below water table

Iceberg Analogy

Note: Picture is not real, digital composite.

http://www.athropolis.com/news/berg-pic.htm

Prediction of Vertical LNAPL Saturation Profile

In-well LNAPL Thickness

Vertical (static) Equilibrium Model (VEQ) Assumes static water table & homogenous soil

Capillary pressure-saturation relationship (e.g.,van Genuchten, Brooks-Corey)

Scaling parameters to go from air-water to oil-water system

Vertical LNAPL Saturation Profile

- Available tools include:
 - API LNAPL Distribution and Recovery Model (LDRM) (API 4760)
 - API Interactive LNAPL Guide

Vertical Equilibrium (VEQ) Model

Uncertainty introduced VEQ model through:

- Fluctuating water table and LNAPL thickness
- Geologic heterogeneity
- Uncertainty in capillary parameters and other soil properties
- Uncertainty in residual saturation
- Consequently VEQ model is highly approximate and should be used with caution

Vertical LNAPL Saturation Predicted using VEQ Model

Calculated using API Interactive Guide (for 1 m product)

Key Point: For given LNAPL thickness, LNAPL saturations greatest for coarse-grained soils – what are the remedial implications?

In-well LNAPL Thickness vs. Water Table Height (Unconfined Aquifer)

From Huntley et al. (1994)

Key Point: In-well LNAPL thickness increases with declining water table for unconfined aquifer

In-Well LNAPL Thickness for Geologically Complex Settings

Measured and Modeled LNAPL Saturations

From ExxonMobil

Context: 3.8 m product, sandy soils, rising water table, possibly confined Key point: VEQ model may overpredicted saturation (use with caution)

LNAPL Saturations Are Not Uniform

From ExxonMobil

24.0

24.0

Each Interval Equals One Tenth of a Foot

23.0

UV Light Plain light

GOLDER ASSOCIATES

Each Interval Equals One To

Potentially Mobile Fraction of the LNAPL Distribution

From Sanjay Garg (Shell)

Darcy's Law for LNAPL

 $V_o = LNAPL$ seepage velocity $S_o = LNAPL$ saturation $\theta =$ total porosity $k_{ro} =$ relative permeability of LNAPL g = gravitational coefficient $\rho_o = LNAPL$ density

- ρ_w = density of water
- μ_o = LNAPL viscosity
- μ_w = water viscosity
- i_o = LNAPL table gradient
- K_w = saturated hydraulic conductivity
- *K_o* = LNAPL conductivity

Relative Permeability

Definition: Porous media ability to allow flow of a fluid when other fluid phases are present

$$k_{ro} = f(So)$$

Key Point: Relative permeability decreases rapidly as LNAPL saturation declines from 100%

Prediction of Relative Permeability to LNAPL

Vertical LNAPL Saturation Profile

Saturation-Permeability Model (Burdine, Mualem)

Vertical Permeability Profile (and method to give integrated k_{ro})

Builds on VEQ model – same cautions apply!

- Available tools include:
 - API LNAPL Distribution and Recovery Model (LDRM) (API 4760)
 - API Interactive LNAPL Guide

Instead of using model can also estimate K_o from baildown test at wells

Two LNAPL Mobility Concepts

Adapted from ITRC (2009)

Key Point: LNAPL in the plume core may be potentially mobile, but plume footprint often stable

Two LNAPL Mobility Models

Core Plume: LNAPL Seepage Velocity (Darcy's Law) -

Periphery Plume: Brooks-Corey Displacement Head Model

Lines of Evidence for LNAPL Footprint Stability

- 1. Site monitoring data
- 2. Estimated LNAPL Seepage Velocity (Darcy's Law)
- 3. Displacement head model for LNAPL movement into water-wet pore (Brooks-Corey model)
- 4. LNAPL saturation/residual saturation analysis
- 5. LNAPL mass analysis
- 6. LNAPL product recovery analysis
- 7. Age of LNAPL release & weathering analysis
- 8. Dye tracer test

Precluding Conditions

- Visual evidence NAPL at receptor (e.g., sheens surface water)
- LNAPL presence in wells and:
 - Fractured bedrock
 - Very steep gradients
 - Very large water table fluctuations
 - Preferential pathways
 - LNAPL source very close to receptor

1. Site Monitoring Line of Evidence

- LNAPL may be mobile when temporal sampling indicates:
 - increasing thickness of LNAPL in monitoring wells
 - advancement of LNAPL across a monitoring well network
 - Advancing dissolving plume from NAPL source zone (dissolved plume halo)

2. LNAPL Seepage Velocity Model Inputs

Parameter	Tier 1	Tier 2
LNAPL thickness	Measure	Measure
LNAPL gradient	Measure	Measure
LNAPL properties	Default or measure if mixture or weathered LNAPL	Measure
Capillary parameters (VG N, α), porosity	Default for soil type, requires grain size (e.g., API Interactive model, database)	Measure
Residual saturation	Default for soil type	Measure
Water saturation	Default for soil type	Measure

2. Van Genuchten Capillary Parameters

2. LNAPL Seepage Velocity

ASTM suggests deminimus velocity of 0.3 m/year below which would not need to be concerned with LNAPL mobility

3. Brooks-Corey Displacement Head Model

Displacement
$$\rightarrow \Delta \Psi = \Psi_{bow} - \Psi_{boa}$$
 head

$$\Psi_{bow} = \frac{\Psi_{baw} \sigma_{ow}}{(1 - \rho_r) \sigma_{aw}} \qquad \Psi_{boa} = \frac{\Psi_{baw} \sigma_{ao}}{\rho_r \sigma_{aw}}$$

K Point: If in-well LNAPL thickness is less than displacement head, LNAPL body may be stable (but potentially somewhat non-conservative model based on estimation of bubbling pressure)

For more information see Golder report for BC Ministry of Environment http://www.env.gov.bc.ca/epd/remediation/reports/index.htm

• API 4760

3. Brooks-Corey Displacement Head Model

LNAPL Displacement Head Required for Movement into Water-wet Soil

4. LNAPL Saturation Analysis

- Is $S_0 > S_{or}$?
- S_{or} is dependent on initial LNAPL saturation, soil water content at time of LNAPL release and soil pore size distribution
- One approach is to measure total and residual saturation in soil cores
 - Centrifuge test (1000g)
 - Water drive
- Another is estimate using f-factor where
 S_{or} = f S_o (assumes no lower limit to S_{or})

4. LNAPL Saturation Analysis

From ExxonMobil

- Key Points: So > Sor, water drive and centrifuge tests produced LNAPL indicating potential mobility, difficult to say which is best test.
- There are some sites where Sor > So, where no product produced

5. LNAPL Mass Analysis

5. LNAPL Mass Analysis – How far could LNAPL move?

Assume all LNAPL above residual saturation within impact-ed zone is potentially mobile, how far could it move?

$V_{o} = Abn(S_{o} - S_{or})$ Regional Gradient $V_{o} = Abn(S_{o} - S_{or})$ $A = \frac{V_{o}}{\frac{1}{2}bnS_{or}} D = \frac{A}{W}$

Medium Sand A = 30 m by 30 m impacted area b= thickness above $S_{or} = 0.7$ m V_o = Potentially mobile LNAPL volume = 9.6 m³ S_{or} = Residual LNAPL saturation = 0.15 n = total Porosity = 0.38 **D = Distance = 16 m**

Moves here 🖛 LNAPL source

Key Question: What are implications of LNAPL moving relatively small distances?

Conclusions

- Opportunity for improved LNAPL management based on good science and new tools
- LNAPL saturations are not uniform, but are controlled by soil heterogeneity (greater LNAPL volume in coarse-grained soil)
- As the LNAPL saturation increases, the relative permeability and potential LNAPL velocity also increases
- There is need to move beyond conservative in-well LNAPL thickness thresholds to lines-of-evidence approach that takes advantages of new approaches and tools