Fracture Emplacement of a Micro-Iron/Carbon Amendment for TCE reduction in a Bedrock Aquifer

Figure 3. Locations of the fracture boreholes and monitoring wells for the Atlas 12 Pilot Test.

Outline

- What is Fracturing?
- Site Background and Objectives
- Pilot Program Design
- Emplacement of Treatment Amendment
- Initial Groundwater Quality Results
- Fracture Mapping Results
- Implications for Full Scale Remediation

What is Fracturing?

Fracturing is a process in which a fluid is applied to a soil or rock mass until failure of the soil or rock occurs, which results in a tensile parting (i.e. fracture).

Hydraulic Fracturing for Amendment Placement

- Mobile mixing tank and pumps
- Fluid Delivery System (gel)
- Drilling equipment
- Downhole Fracturing and Injection tools
- Real time pressure & flow data acquisition
- Fracture mapping equipment & modeling software

Project Background

- Former USAF "Atlas 12"
 Missile Site, Colorado
- Operational disposals of TCE (1960-1965) resulted in impacts in underlying sandstone aquifer to 60 ft. depth
- Widespread TCE concentrations in groundwater upwards to 4,000 ug/L

Pilot Objectives

Figure 1. Pilot Test activity flowchart.

Evaluate viability and performance of *in situ* remediation using hydraulic fracturing to:

- enhance permeability of sandstone aquifer
- deliver a micro-iron & carbon amendment into bedrock sediments
- reduce TCE concentrations in groundwater
- USACE mandate for selected technology to meet clean-up objectives within 5 years

Pilot Project Design

- Additional site characterization & plume delineation (North Wind, Inc)
- Rock coring (Layne Christensen) and laboratory geotechnical strength testing (Golder Associates)
- Micro-iron/carbon (Adventus "EHC-G") amendment application design
- Delivery fluid design & amendment Fracture-Emplacement Protocol (Frac Rite)
- Fracture Mapping and conversion to 3D model (Frac Rite, Eco-Scan)

Rock Testing Results

Sample tested from 51 and 66 ft. depth – CIU Triaxial Tests

- Peak shear strength: 350 to 876 kPa
- Cohesive Strength: 45 to 75 kPa

Fracturing and EHC-G Emplacement

- 7 Boreholes in "Source Area" Plume
- 2 Boreholes in "Dissolved Area" Plume
- Fracture-emplacement of EHC-G in zone from 35 ft to 63 ft bgs in bedrock
- Total of 206,000 lb of EHC-G micro-iron delivered at 42 individual fracture depths.

Atlas 12 Pilot Test EHC-G Distribution

Source Area: 7 Fracture Boreholes

Dissolved Phase Plume: 2 Fracture Boreholes

EHC-G Injections: April 20 to May 19, 2009

Mass of EHC-G per Borehole; Number of Fracture Depths

Legend → Monitoring Well Fox Hill Sandstone Pilot Test Fracture Borehole/Monitoring Well Fox Hill Sandstone —— Buildings —— Fence Former Retention Pond

Fracture-Emplacement

Fracture Borehole Log

- Pressure vs. time characteristics indicate operational fracture pressures:
- "Break" Pressure –
 indicates pressure at
 which bedrock breaks
 (i.e. fractures)
- "Propagation" Pressure indicates pressure required to radiate fracture outward from borehole

Groundwater Monitoring Parameters

ARD Parameters

- TOC (total organic carbon)
- Redox Parameters
- TCE and degradation products
- Microbial (*Dehalococcoides* spp.)

Chemical Dechlorination Parameters

- TCE
- Ethene

Source Area: Redox Parameters

Source Area: Redox Parameters

Redox Parameters at MW7 Dissolved Phase Plume: 600 **Redox Parameters** 500 Sulfate (mg/L) Nitrate (mg/L) 400 SO4(mg/L) Dissolved oxygen (mg/L) 300 Methane (ug/L) Ferrous Iron (mg/L) 200 MW-17A **EHC-G Injections** MW-18 100 MW-19 Jan-96 Jan-98 Jan-00 Jan-02 Jan-04 Jan-06 Jan-08 Jan-10 MW-13 MW-35 Redox Parameters at MW13 MW-7 1500 MW-34 1250 MW-20 1000 750 Reported Approximate Location of the Former Retention Pond 500 250 MW-9 Jan-96 Jan-98 Jan-00 Jan-02 Jan-04 Jan-06 Jan-08 Jan-10

20

15

10

25

20

15

10

Redox Summary:

• All wells show some evidence of reducing redox potential (especially depleted oxygen, elevated iron, and methane production; sulfate and nitrate are still present in most wells)

Source Area: VOCs

Dissolved Phase Plume: VOCs

VOC Summary:

- All source area wells showed TCE reduction; minimal changes in dissolved plume
- cis-DCE increased at MW-8 (~50 to 120 ug/L); no significant changes in vinyl chloride
- Ethene detected at low levels (0.35 to 4.5 ug/L)

Fracture Mapping using Tiltmeter Geophysics

 Tiltmeters are ground surface sensors that detect tilt angle and tilt direction in response to a fracturing or injection event in the subsurface

Fracture Mapping Scale 10' increments Conducted for 7 boreholes in source area MW-24 MW-23 MW-5 MW-27 MW-28 MW-19 MW-29 A010S 12 S110 MW-22 MW-30 MW-33 MW-7 MW-31 MW-32 MW-12 MW-21

Fracture Mapping

From MW-22 looking west

Fracture Mapping- MW-29

Implications for Full Scale Application

- Massive EHC-G loading can be delivered as fractures
- Widespread EHC-G distribution achieved using few boreholes
- Initial GW quality results show significant decrease in TCE within first 90 days
- 3D Fracture Mapping allows validation of EHC-G distribution
- ISCR appears to be an effective remedial approach
- Passive remediation negates need for capital treatment equipment and O&M costs

Acknowledgements

OUR THANKS TO:

- United States Army Corps of Engineers (Omaha District)
- North Wind, Inc.
- Golder Associates Limited
- Adventus Americas, Inc
- Layne Christensen Drilling
- Eco Scan, Inc.