

October 15-17, 2008 The Fairmont Banff Springs Banff, Alberta

To Be or Not to Be a DUA? **A Critical Review of Procedures Used to Identify Domestic Use Aquifers** by Aurore Kurc, Tai Wong & Yong Li

Definition of a DUA ♦ Background Hydraulic Conductivity • Methods of estimation Spatial variations and size effects Discussion

O'CONNOR ASSOCIATES

Recommendation

2

Why Identify a DUA?

OUA: <u>Domestic Use Aquifer</u>, used to determine groundwater ingestion pathway

Impacts on environmental practice:
 determining remediation guidelines

EX: Benzene concentration in groundwater for a coarsegrained site under residential/parkland land use

- 0.005 mg/L WITH DUA pathway included

- 0.140 mg/L DUA pathway excluded

AENV Definition of a DUA (1/2)

Appendix E (AENV 2008), DUA:

- ♦ Sustainable yield Q ≥ 0.76 L/min
 - with bulk K ≥ 10⁻⁶ m/s
 - and sufficient geologic unit thickness b (> 0.5 m)

O'CONNOR ASSOCIATES

- Used for domestic purpose
- Aquifer designated as DUA by AENV

Boundary curves linking K and b

Confined / Unconfined Aquifer

Δ

AENV Definition of a DUA (2/2)

DUA pathway is excluded if: Saline groundwater: TDS > 4000 mg/L • Presence of natural geologic barrier : »At least 5 m of massive undisturbed unfractured fine-grained material »Bulk K ≤ 10⁻⁷ m/s

Background (1/2)

Farvolden or Q₂₀ Method (1959 unpublished report)

- $Q_{20} = 0.68 \times K \times b \times H_a \times 0.7$
- Q₂₀: sustainable yield (m³/s)
- K: bulk hydraulic conductivity (m/s)
- b: aquifer thickness (m)
- *H_a*: available head (m)
- 0.7: safety factor (chosen by Farvolden)

Background (2/2)

Limitations

- Theis' idealization assumptions
 - » Isotropic, homogeneous, infinite extent, fully confined aquifer
 - » Very few aquifers meet assumptions
- No recharge
- Some studies show that it overestimates long-term yield

AENV: Procedure to identify a DUA (1/3)

Methods suggested:

- Calculate sustainable yield: Q₂₀ Method
- Determine K: Pumping test or Slug test
- To simplify calculations:
 - Provided 2 boundary curves
 - for confined and unconfined aquifer

AENV: Procedure to identify a DUA (2/3)

AENV: Procedure to identify a DUA (3/3)

$$Q_{20}=0.68 \times K \times b \times H_a \times 0.7$$

Unconfined aquifer

• Unknowns: b, K, H_a with H_a = 2/3b

Confined aquifer

- Onknowns: b, K, H_a
 - H_a: distance between the non-pumping water level and the top of aquifer; no further information provided

Common methods for determining K General

Hydraulic conductivity K: K_x and K_y: K_h (horizontal) • K₂: K_v (vertical) Anisotropy ratio K_h/K_v

 K measured using field or laboratory methods

Common methods for determining K Slug Test (1/4)

Modified from www.aquifertest.com

12

Common methods for determining K Slug Test (2/4)

Analysis Method	Aquifer Type	Well-Bore Skin	PP- Well	Kh/Kv	Formation Storage
Bouwer & Rice (1976) Bouwer (1989)	C/UC	N	Y	(PP)	N
Hvorslev (1955)	C/UC	N	Y	(PP)	N
Cooper et al. (1967)	С	N	N	N	Y
KGS (1994)	C/UC	Y	Y	Y	Y

O'CONNOR ASSOCIATES

C: Confined UC: Unconfined

Y: Yes ; N: No PP: Partially Penetrating

Common methods for determining K Slug Test (3/4)

Time-displacement data affected by:

- Flow direction
 - »Slug is introduced or removed
- Nature of the aquifer
 - »Confined, unconfined, leaky; anisotropy

O'CONNOR ASSOCIATES

- Well characteristics
 - »Well development

Common methods for determining K Slug Test (4/4)

Modified from www.geology.sdsu.edu

Common methods for determining K Pumping Test (1/4)

Conducted to identify <u>Transmissivity and</u>
 <u>Storativity</u>, and possible hydraulic boundaries

Common methods for determining K Pumping Test (2/4)

Observation wells help estimating:

- S and head losses
- Directional dependence
- Flow boundaries (e.g., river, lake)
- Distance of observation well from pumping well:

O'CONNOR ASSOCIATES (

 $r_{obs} > 2b(K_h/K_v)^{0.5}$

Common methods for determining K Pumping Test (3/4)

Near constant extraction rate Ouration: depends on aquifer type Better data if pumping reaches steady or pseudo-steady state Important to record barometric pressure

Common methods for determining K Pumping Test (4/4)

Obtain K estimates by comparing the data with theoretical plots (straight-lines or type curves) Estimate K_h and S K_h/K_y and b can be estimated if partial penetrating wells used

Common methods for determining K Other Methods (1/2)

Direct-push (DP) technologies

- Permeameter (DPP)
- Hydraulic Profiling Tool (HPT)
 Cone-Penetration Testing (CPT)

Geophysics

Gamma, induction, neutron

Common methods for determining K Other Methods (2/2)

Laboratory Methods

 Performed on small "undisturbed" soil samples: usually assess Kv

- Constant-head permeameter
- Falling-head permeameter

Grain-size analysis (infer K bulk)

Correlation method (e.g. Hazen)

Scale Effect Pumping test vs Slug test

	Pumping Test	Slug Test	
Time	Hours to days	Minutes to hours	
Radius	Regional scale	Local scale (≈1/10 regional scale)	

- K (pumping test) > K (slug test) > K (laboratory) size
- <u>Other scale effects:</u> natural scale dependence (e.g. fractures); uncertainties (e.g. aquifer thickness)

Spatial variation in K

The norm rather than the exception
Can vary up to an order of magnitude for a formation at a given site
K can varies between wells where tests were performed

Spatial variation in K <u>Stratified formations</u>

To treat layered lenticular and discontinuous units as a single hydrostratigraphic unit – use equivalent hydraulic conductivity K

Flow parallel to the bedding planes

$$\overline{K} = \frac{\sum_{i=1}^{n} K_i h_i}{\sum_{i=1}^{n} h_i}$$

Flow perpendicular to the bedding planes

$$\overline{K} = \frac{\sum_{i=1}^{n} h_i}{\sum_{i=1}^{n} \frac{h_i}{K_i}}$$

Additional considerations regarding DUA identification

K estimates:

- Which method should we use to identify K?
- How many wells are sufficient to assess K at a site – likely site-specific?
- How to assess spatial variation in K?
- Importance of aquifer characteristics?

Conclusions: Recommended procedure

- 1) Formulate a "living" CSM
- **2)** Determine stratigraphy and screen interval for in situ testing (use DP-HPT or geophysical logging for example) **3)** Drill and install wells 4) Carry out in situ hydraulic testing **5)** Obtain K using appropriate analysis methods

HPT Injection Pressure Profile and variations of K values with Depth

Thank you!

Modified from www.cartoonStock.com

o'connor associates 🧶

Direct-push (DP) technologies

Basic Principles:

- Small diameter rod string with sensors
- Pushed in subsurface
- Using hydraulic ram (and High-frequency hammer)
- Sampling tool: Shelby tube, dual tube samplers

Hydraulic profiling

Gives vertical profiles of lithological/ hydrological information

• HPT (+ EC)

 Can be used for direct slug testing

www.kgs.ku.edu

o'connor associates 🧶

DP-Permeameter (DPP)

Gives vertical variations in K in shallow unconsolidated formations

Hydraulic test – measures by transducers

O'CONNOR ASSOCIATES

Limits:

Low depth achieved

Vulnerability to media alteration

<u>Cone-penetration testing</u> (CPT)

> Can sense stratigraphy, relative density, shear strength, resistivity...

 Measure the resistance on the tip of a conical point rod

Geophysics

(

Downhole Log	Properties measured	Potential application	Radius of measurement
Natural Gamma	Natural gamma radiation	Lithology related to clay/silt content	6 to 12 in.
Neutron	Hydrogen content	Saturated porosity, moisture contents	6 to 12 in.
Induction	Electrical	Conductivity, changes in clay contents,	30 in
	conductivity	permeability of fractures	

Natural gamma log and Electrical induction log

O'CONNOR ASSOCIATES