

Project Chain

DDE Products

Site investigation

Project Plan Drafting

- Compose remediation plan
- Select equipment required for dredging dewatering and separation
- Select positioning and measuring equipment
- Select dilution monitoring equipment to meet government regulations
- Prepare operational risk analysis

Selective layer removal

Selective removal:

- To minimise disturbance
- To minimise dredge volume
- To reduce treated volume
- To reduce transport and dumping costs
- Enables reuse of clean top layer

DAMEN

Design Criteria for environmental dredging equipment

- Economic handling of dredged materials.
- Capacity of dredging equipment depending on storage or de-watering capacities.
- Resistant to debris.
- Capable of handling organic gasses.
- High accuracy positioning system required.
- Minimal dilution of the polluted dredged materials.
- Minimal spillage.
- Minimal turbidity during the dredging action.
- Manoeuvrability and dredge pattern.
- Availability of protocols for field measurement of sediment release from dredgers.

DAMEN

Environmental Dredging Concepts

- Auger dredge (+DDE)
- Bottom disc cutter (+DDE)
- Modified bucket chain dredge
- Sweep dredge
- Closed clam shell dredge
- Penetration dredging (+DDE)

Ketelmeer dredge tests

Other concepts

Ketelmeer clean-up project

Auger dredge 'HAM 291'

- Thin layer dredging
- •Minimal spill
- Minimal turbidity
- High transport density
- •6 Degrees of freedom
- •Flexible dredge patterns
- High position accuracy

Bottom Disc Cutter 'Vecht'

- Controllable flow
- •Minimal spill
- Minimal turbidity
- High transport density
- •6 Degrees of freedom
- •Flexible dredge patterns
- High position accuracy

Bucket Chain Dredge 'Aalscholver'

- •Minimal spill
- Minimal turbidity
- •In situ transport density
- High position accuracy
- Resistant for debris

Sweep dredge 'Vlaanderen XV'

- Thin layer dredging
- •Minimal spill
- Minimal turbidity
- •High transport density
- High position accuracy

Ketelmeer Results

	Auger	Disc	Bucket	Sweep
Dilution	+	+	+	+
Spillage	+	+	+	+
Turbidity	+	+	+	+
Accuracy	+	+	+	+
Capacity	+	+	+	+
Debris	+	-	+	+
Gas	+	+	+	+
Profiles	+	+	-	-
Measurement	+	+	+	+
Economic	+	+	-	+

Clamshell Bucket

Disadvantages:

- No selective removal
- •Requires silt screens

Penetration Dredge

Feature: polluted sediment remains in place

Mode of bottom removal

Auger collection

Spill composition of an auger

Auger with trailing shoe

Auger/Pump Characteristics

- Capable of pumping in situ density mixture
- Capable of handling organic gas
- Resistant to debris
- Minimal dilution
- Minimal spillage
- Low transport / dumping costs

Remaining Boundary Conditions

- High accuracy positioning system required.
- Manoeuvrability and dredge pattern.
- Availability of protocols for field measurement of sediment release from dredgers. (HR Wallingford)

DAMEN

DGPS-Receiver with own reference station

Required instrumentation

Echo sounder

DGPS antenna

Tidal receiver

Motion sensor

Member of the DAMEN SHIPYARDS GROUP

Flow & Density control for treatment plant

Large scale to small scale

DOP® Pump features

- Normal dredge dump
- Mechanical seal
- Hydraulic/electric drive
- Protective casing
- Suction pipe
- Sand production head
- Discharge pipe
- Jet water pipe

Combining Augers and DOP's

Auger head for DOP® pump

Experience gained in practice

Units build:

- Auger dredge HAM291 Van Oord
- DOP1815 with auger Dutch Dredging
- DOP2320 with auger Golder Associates
- DOP2320 with auger
 - Kystverket
- DOP2320 with auger
- D.E.M.E

Disc cutter

- Boskalis
- DOP1815 with auger Deco Diving
- DOP1815 Beaudredge Boskalis

Example cases

HAM291 (Ketelmeer/Slufter)

Ketelmeer results

- Total volume: 15 million m³
- Total area: 2800 ha
- Project duration: 2 years

Average layer

thickness: 0.5 m!

- Dredging and construction: 113.45 million Euro
- Accuracy: vertical 5 cm, horizontal 10 cm

Slufter Results

- Total volume: 1.1 million m³
- Average in situ density
- Transport distance (with boosters): 12 km

de Boer (the Netherlands)

In situ mixture density

De Boer features

- Typical soft soil project
- Attached on a manipulator of an excavator
- 6 Degrees of freedom
- Very accurate positioning
- Contaminated silt removed
- Minimal dilution
- Reduced handling, dewatering and storage costs
- Remaining sediment very clean

Golder dredging site (Canada)

Golder results

- Production ranged from 200 to 6,500 m³/week
- Average production of 2,800 m³/week
- 50,000 m3 of contaminated sediments dredged
- All hazardous waste and industrial fill removed
- Costs of permitting, monitoring, removal, water treatment and disposal are high
- Segregation of different classifications results in large savings on disposal costs
- Turbidity increase during operations: very low to none

Heavy-duty auger Kystverket (Norway)

- Arctic environment
- Stiff glacial clay
- Raking motion
- Heavy-duty frame
- Debris collector

Debris in protective grating

Kystverket results

- Low turbidity
- Accurate removal of contaminated layers
- Minimal environment disturbance

Dedicated portable DOP® auger dredge (DEME Sweden)

Dedicated portable DOP® auger dredge (DEME Sweden)

DEME results

- Pollution by traditional paper industry
- High percentages of PCB's, Cadmium and Mercury
- In situ dry material was only 8 %, dredging 5 % and pumping 4-4,5 %
- Total quantity of 260.000 m3
- Normal ears

Now: Only one

summer season!

Conclusions

- Excellent real life dredging laboratory Ketelmeer
- Vast amount of knowledge gained
- Understanding of processes
- Applicable in wide range of projects
- In situ removal: low transport and storage costs
- Minimal disturbance of good sediment
- Targeted treatment of polluted soil possible
- Best possible delivery to treatment plant

Treatment of Dredged Materials

Miami River Project Overview

Miami River Project Diagram

Sediment

Miami River Project Details

- Start June 1, 2005; Duration 5 months
- 250,000 cubic meter
- 10,000 cubic meter per week
- 38 Standard 20' and 40' containers
- 5000 square meter footprint
- Survived hurricanes Katrina, Rita and Wilma
- Dewater of fines up to 55% dry solid content
- 100% Process water recycling
- 125,000 cubic meter of clean sand produced
- Product directly by truck to customer

Thank you for your attention!

GDP HQ

DAMEN DREDGING EQUIPMENT

Visitor's address

Edisonstraat 32

3861 NE NIJKERK, The Netherlands

Tel : +31-33-247 40 40

Fax : +31-33-247 40 60

Website : www.damendreding.com

E-mail: info@damendreding.com

Mail address

P.O. Box 1021

3860 BA NIJKERK, The Netherlands