PILOT TEST OF ISCO TECHNOLOGIES LEADS TO IMPROVED UNDERSTANDING OF IMMEDIATE AND MID-TERM GEOCHEMICAL RESPONSE AND CONTAMINANT DESTRUCTION WITHIN PETROLEUM HYDROCARBON PLUME

¹<u>James Studer</u>, ²Barry Ronellenfitch, ²Adam Mabbott, ²Heather Murdoch, ²Greg Whyte, and ³Ian Hakes

¹ChemRem International LLC, 8100 M-4 Wyoming Blvd. NE #410, Albuquerque, NM 87113 USA; ²Cirrus Environmental Services, Inc., Bay 10, 1916 – 30th Avenue, Calgary, AB T2E7B2; ³City of Medicine Hat, 580 First Street SE, Medicine Hat, AB T1A 8E6

REMTECH 2008 at Banff, Alberta

Presentation Goal

Report on ISCO pilot test involving activated sodium persulfate and petroleum hydrocarbons (PHC) that was designed to gather critical information on:

- Spatial distribution of components of injected fluids and chemical and biological reaction by-products within 7 and 20 days of start of chemical application; and
- 2) Magnitude of sediment and groundwater contaminant concentration reduction in the presence of non-aqueous phase liquid (NAPL).

Presentation Outline

- Chemical Oxidation and Injection Overview
- Pilot Test Background and Program
- Results Immediate (7 Day) Injectate Distribution
- Results Distribution of Treatment Chemicals and Reaction Byproducts within Mid-Term (20 Days)
- Results PHC Reductions in GW and Soil at Day 20
- Summary and Implications

Project History and Site Features

- Former retail service station in Southern Alberta
- Operated for 30 years multiple fuel releases
- Decommissioned in 1989 site assessment followed
- Underlain by a sandy unconfined aquifer (6 m-bg)
- PHC plume including smear zone and groundwater
- Area of impact ~ 5000 m² (high impact area ~1000 m²)
- Plume stable or growing slowly as of 2007
- Requirement for remedial action and developer interest in property led to feasibility study and pilot test in 2007

Site Location

Chemical Oxidation Overview

In Situ Chemical Oxidation involves the injection of a dilute oxidant (and potentially an activator) into the subsurface to transform organic contaminants into by-products of carbon dioxide, water, and other benign compounds

• "Low temperature combustion" of organic chemicals (e.g., fuels, herbicides/pesticides, PCE, TCE, high explosives)

 Success depends on effective chemical and hydrogeologic engineering

Chemical Oxidation Overview

The chemical oxidation technology area currently includes four unique classes:

- Ozonation (O₃ and radicals)
- Permanganate (MnO₄)
- Catalyzed Hydrogen Peroxide (H₂O₂ and radicals)
- Activated Persulfate (S₂O₈ and radicals)

Chemical Oxidation Overview **Klozur® Persulfate** $S_2O_8^{-2}$

Strong Oxidizer

Persulfate anion:

 $E^0 = 2.12 v$

 $15S_2O_8^{-2} + 30H^+ + 30e^- \rightarrow 30HSO_4^{-1}$

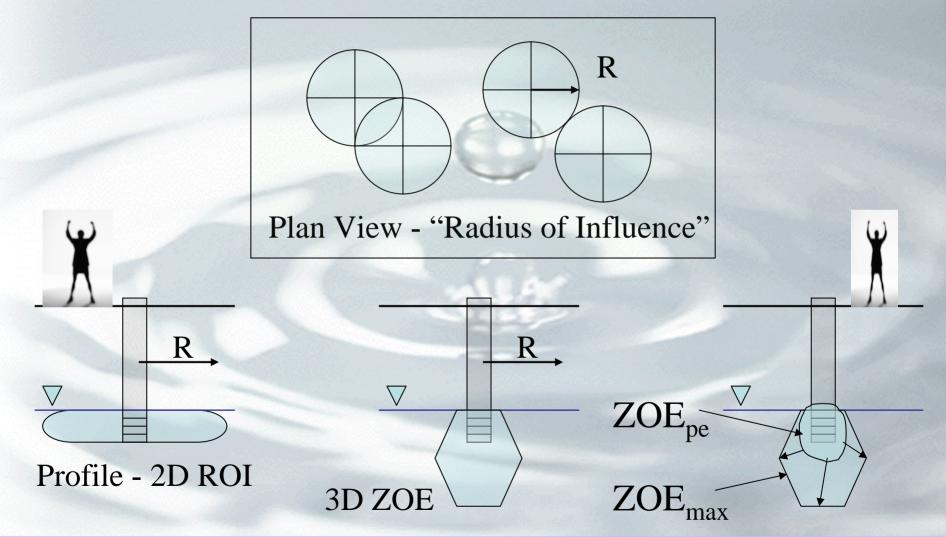
Example of direct oxidation of benzene (C_6H_6)

 $C_6H_6 + 12H_2O \longrightarrow 6CO_2 + 30H^+ + 30e^-$

Need 15 mole S₂O₈⁻² per mole of C₆H₆ mineralized

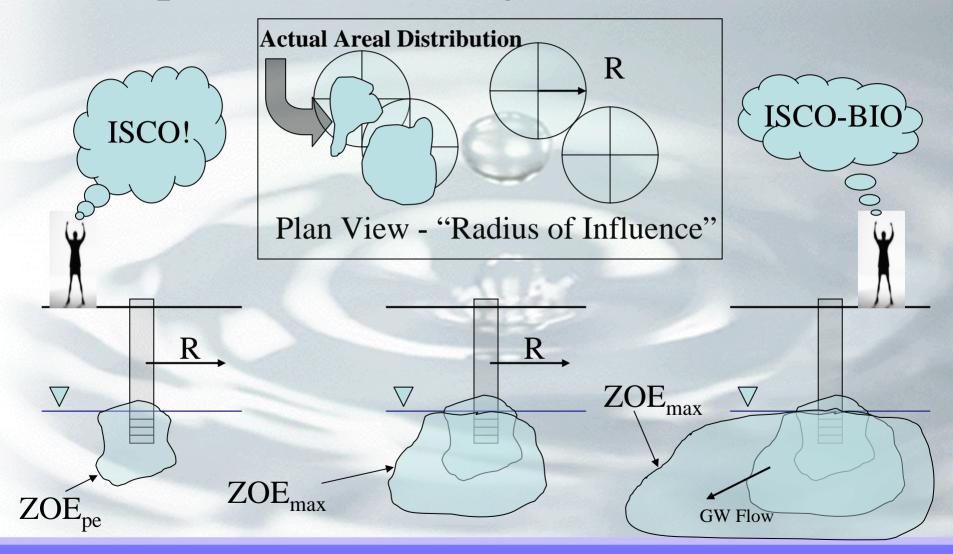
Chemical Oxidation Overview

In general, direct oxidation by persulfate anion is kinetically slow.....

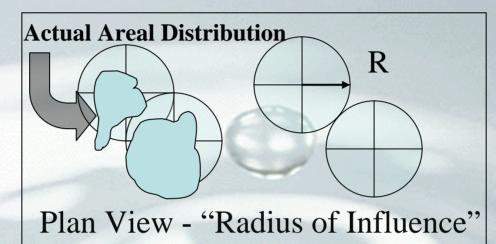

....activation of the anion produces a very strong and kinetically fast acting oxidizer in the Sulfate Free Radical

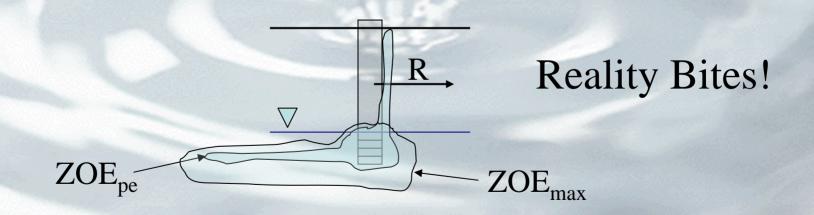
$$SO_4^{\bullet-} + e^{-} \rightarrow SO_4^{-2}$$
 $E^0 = ~ 2.6 v$

$S_2O_8^{-2} \rightarrow 2 SO_4^{-1} \text{ or } (SO_4^{-1} + SO_4^{-2})$

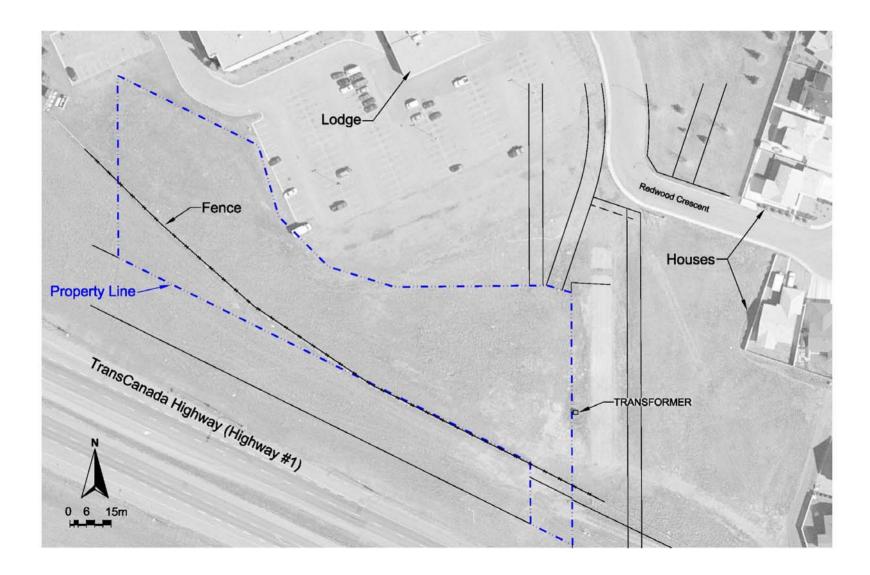

Initiation, propagation, and termination reactions are complex and may involve many types of radicals

Conceptualization of Injection & Placement

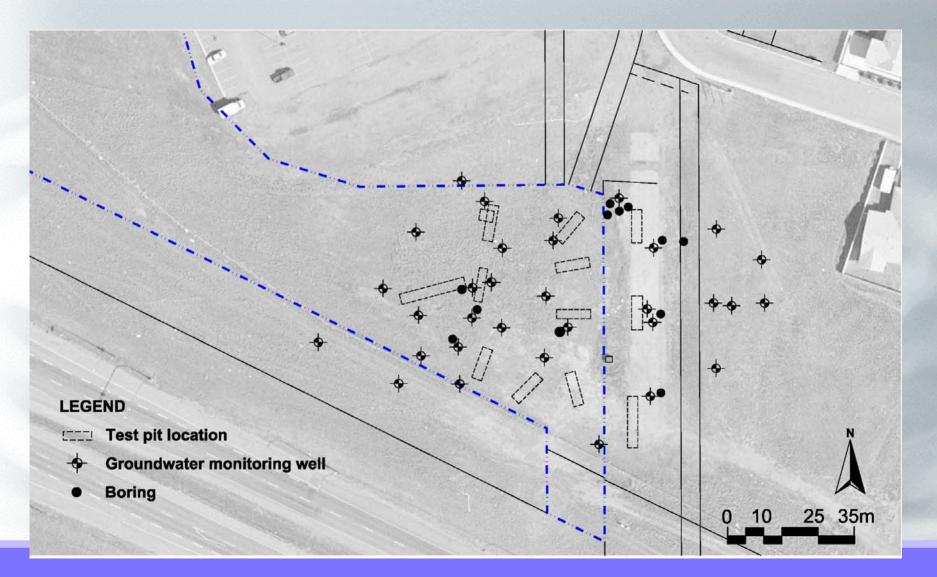



ZOE = **Zone** of **Effect** at times of physical displacement and max dev

Conceptualization of Injection & Placement



Conceptualization of Injection & Placement


Site and Vicinity

Test Pits, Borings and Wells (2006)

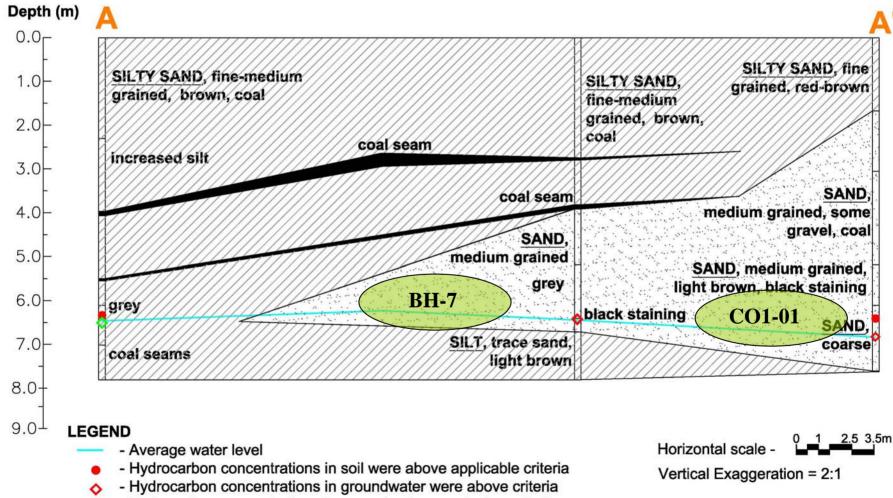
Geologic Profile A-A'

-

•

0

10

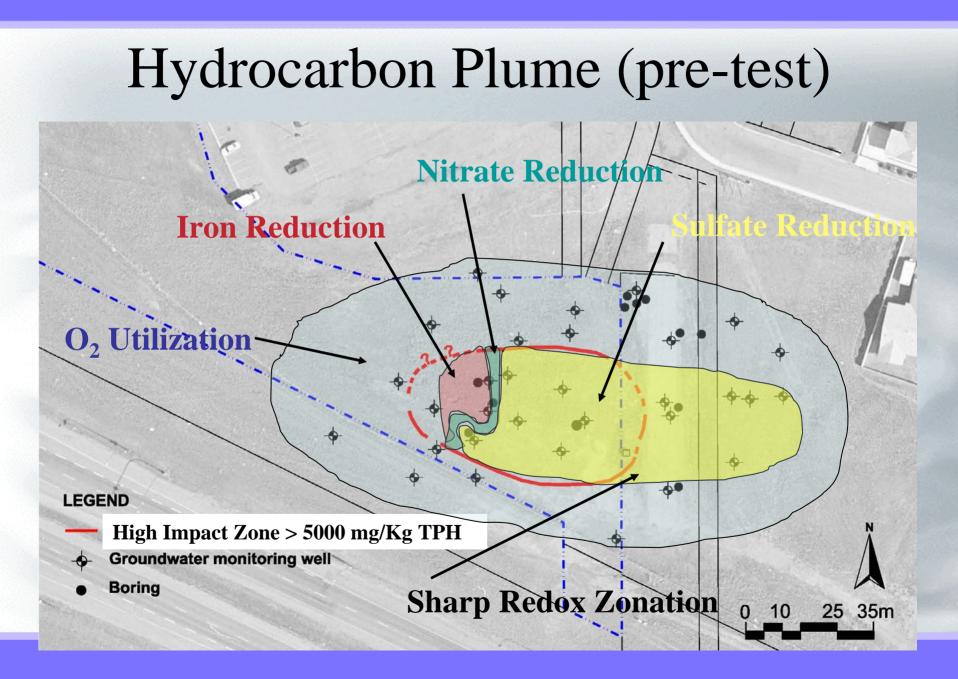

25 35m

- Test pit location
- Groundwater monitoring well
 - Boring

Geologic cross section location

Geologic Profile A-A'(2006)

Hydrocarbon concentrations in groundwater were below criteria


Potentiometric Surface (2006)

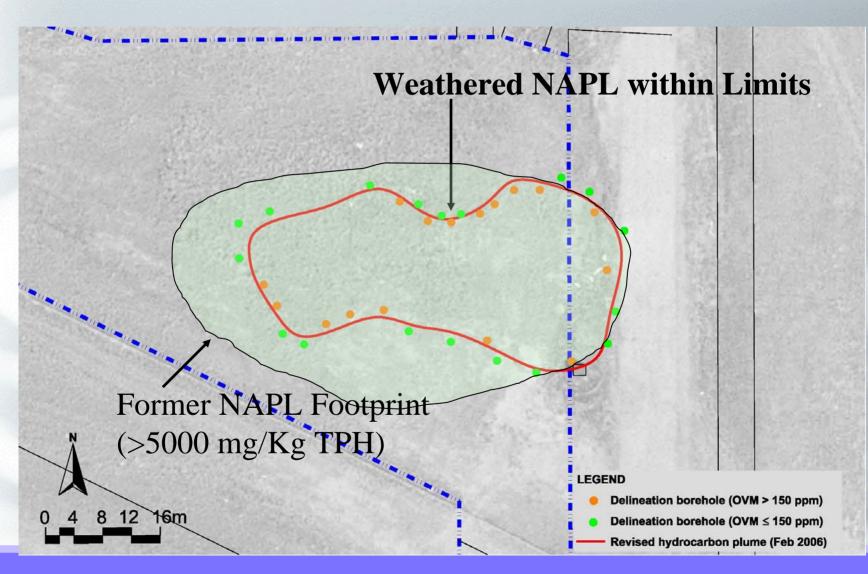
35m

Groundwater Velocity ~ 0.1 ft/day to 0.3 ft/day or 3 ft/month to 9 ft/month

LEGEND

- Groundwater contour (0.1m interval)
- -----> Interpreted groundwater flow direction
- Hydraulic gradient is approximately 0.01 towards the east
- Elevations are set to an arbitrary datum (100m)
- Measurements collected on 28 November 2006

Pilot Test Program

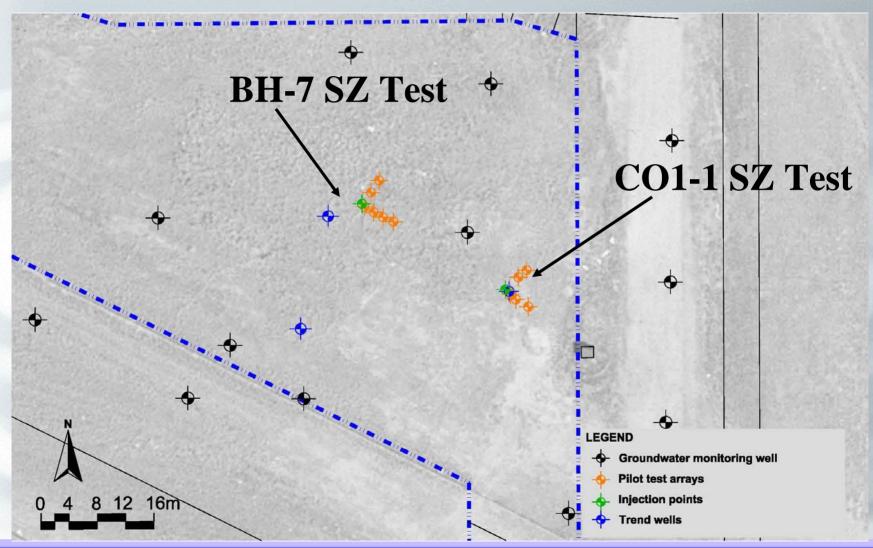

- Pilot Test Program
 - Design Data Collection (DDC)
 - Treatability Study
 - Klozur® Na₂S₂O₈ and iron-EDTA
 - Klozur® CR (base activated chemox-bio)

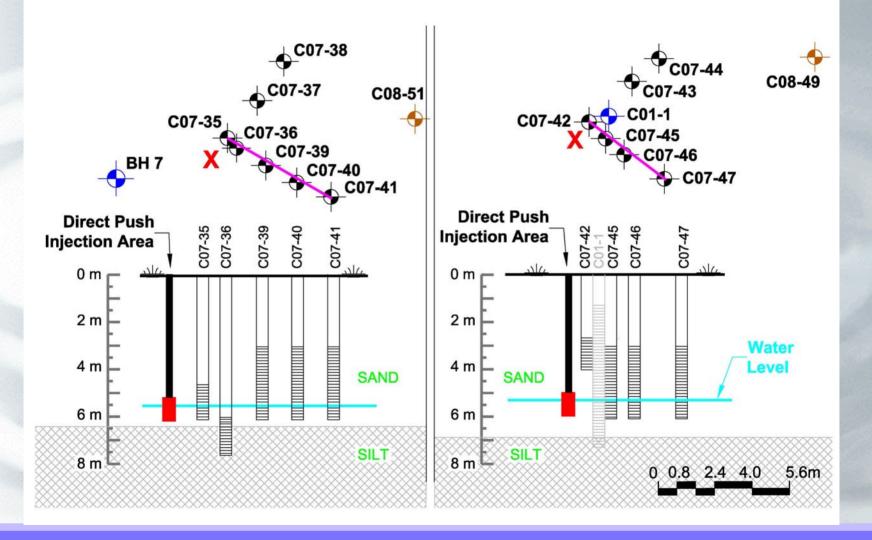
 - DDC Scope: Field Pilot Test (Klozur® CR, Klozur and Dissolvine) 1. Direct push continuous sampling
 - 2. Collection of sediment core and samples for:
 - 1. OVA screening, NAPL detection, TOC, TPH
 - 2. Geologic description
 - 3. Install pilot test array test out field protocols
 - Baseline groundwater sampling and analysis (TOC + DOC) 4.

Pilot Test Area

Hydrocarbon Plume (DDC 2/08)

DDC Plume Delineation


DDC Plume Delineation


DDC Plume Delineation

Pilot Test Arrays and Injection Pts

Pilot Test Array Detail

Pilot Test Implementation Detail

Injectate Summary for BH07 (Klozur+Fe-EDTA)						
Date	Batch No.	Klozur	Fe-EDTA	Water _	_% w/w	
2/22/12	1	25	0.1	37.5	15	
2/22/12	2	25	0.1	37.5	15	
2/26/12	3	25	0.1	37.5	15	
2/26/12	4	25	0.1	37.5	15	

T	Injectate Summary for CO1-01 (Klozur CR)						
2	Date	Batch No.	Klozur	PoxP	Water	% w/w	
1	2/21/12	1	20	22	37.5	22.8	
	2/22/22	2	20	22	37.5	22.8	
	2/27/12	3	20	16	45	17.4	
	2/27/12	4	20	16	45	17.4	

Total injected ~160 gal of 15% and at ~60 C $Na_2S_2O_8 C_0 \sim 150,000 mg/L$

16m

Chemical in Kg Water in US Gallons

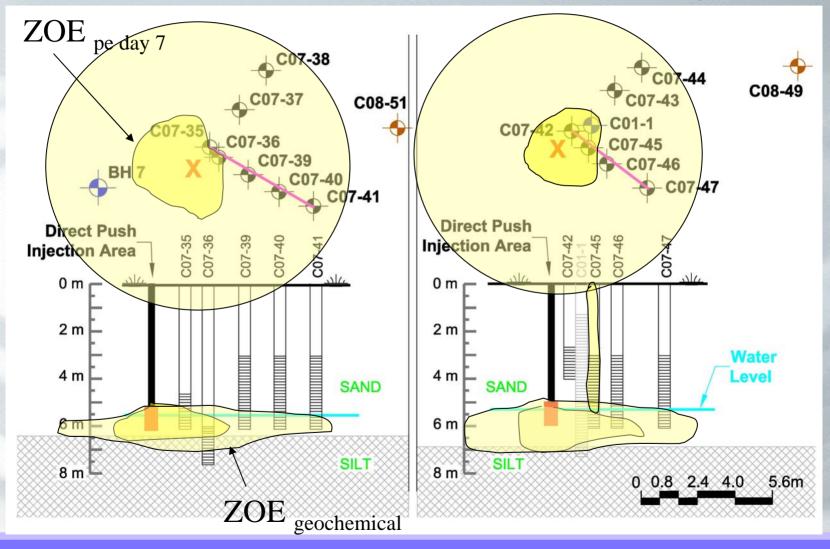
Total injected ~175 gal of 20% ~80 gal at ~60 C when injected $Na_2S_2O_8 C_0 \sim 100,000 mg/L$

Groundwater monitoring well

- Pilot test arrays
- Injection points
- Trend wells

LEGEND

Pilot Test Implementation Detail


Process Monitoring

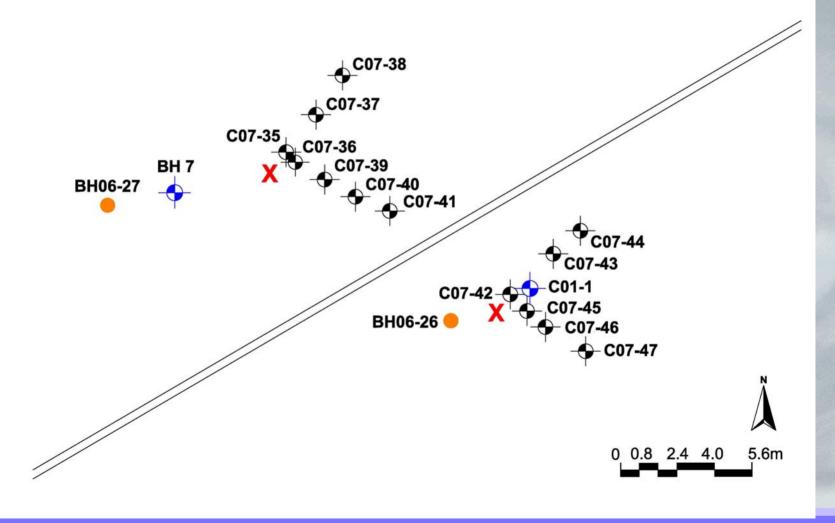
- Visual Observations at monitoring wells / ground surface
- Electrical Conductivity
- Sulfate
- pH
- Temperature (heated water used)
- ORP (strong function of pH)
- Dissolved Oxygen

Performance Assessment

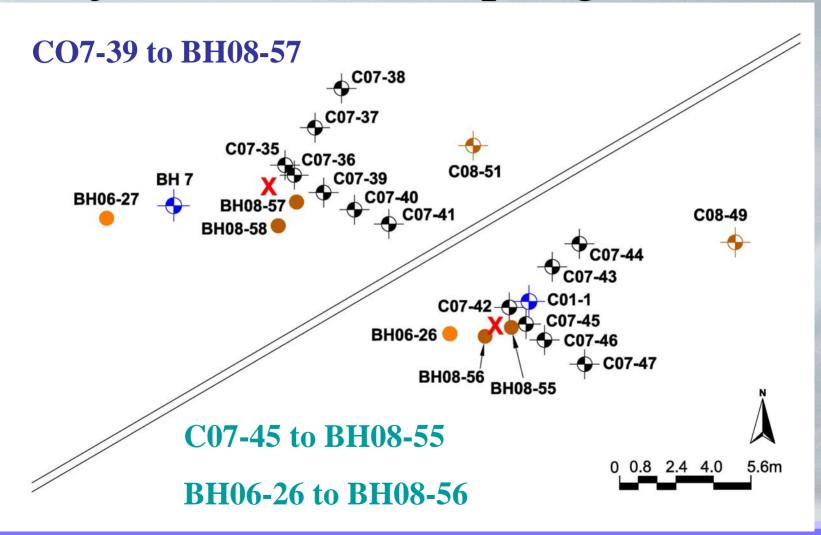
Soil and groundwater sampling and analysis for TOC/DOC and BTEX F1
 F2 F3 F4 (F3 and F4 for soil only)

Immediate Distribution (Day 7)

Mid-term Distribution (Day 19) GW C07-4 C08-49 7-43 C08-51 C07-35 C07-4 07-36 C07-39 07-46 BH 7 C07-40 C07-4 C07-41 **Direct Push** Direct Push C07-35 C07-36 C07-40 C07-42 C01-1 C07-45 C07-46 C07-39 C07-41 **Injection Area Injection** Area 200 1/4 NIC 0 m MA 0 m 2 m 2 m Water 4 m 4 m Level SAND SAND E I 6 m 6 m SILT SILT 8 m 8 m 0 0.8 2.4 4.0 5.6m General ZOE geochemical at Day 19 indicated by yellow


Groundwater PHC Concentrations (Baseline to Klozur® CR Day 20)

Well		Benzen	foluen	eE-benzer	Xylene	s F1	F2
CO1-01	Baselin	e ND	ND	0.51	1 1.16	4 .3	2.7
1 m NE	Day 20	ND	NE	0.55	4 1.78	3 4	3
	_		and a second second				
CO7-43	Baselin	e ND	ND	0.93	8 0.045	3 2.2	31.
2.5 m N	Đay 20	ND	ND	0.34	5 0.00	9 1.9	5.2
			6				
CO7-44	Baselin	e ND	0.00	9 1.29	9 0.010	7 3.5	21
4.0 m NN	Day 20	ND	ND	1.7	0.008	3 2.9	6.4
CO7-47	Baselin	e ND) NC	0.20	5 0.25	3 14.3	3 22.
4.0 m E	Day 20	ND	NC	0.17	4 0.093	9 3.3	9.4


Groundwater PHC Concentrations (Baseline to Klozur[®] Iron-EDTA Day 19)

Well		Benzene	eToluene	E-benzen	Xylenes	F 1	F2
C07-35	Baseline	e ND	ND	0.018	5 0.001	6 0.5	3.3
1 m NNE	Day 20	ND	ND	0.0038	3 ND	0.1	0.7
	-						
C07-36	Baseline	ND	ND	0.121	ND	0.7	2
1 m NNE	Day 20	ND	ND	0.0282	2 ND	0.3	0.9
			1	1			
C07-38	Baseline	e ND	ND	0.001	0.002	9 0.2	1.4
4 m NNE	Day 20	ND	ND	ND	0.005	5 ND	0.3
C07-41	Baseline	ND	ND	0.0062	0.002	7 6.4	5.7
5 m ESE	Day 20	ND	ND	ND	ND	0.3	0.7

Baseline Soil Sampling Locations

Post-Injection Soil Sampling Locations

Soil PHC Concentration Changes (Day 20 after First Klozur® CR Batch Injection)

Comparison of CO7-45 to BH08-55 (Before and After)

Analyte	CO07-45, mg/Kg	BH08-55, mg/Kg
Benzene	< 0.005	< 0.005
Toluene	< 0.05	< 0.05
Ethyl Benzene	14.2	1.35
Xylenes	56.4	6.61
F1 -BTEX	800	40
F2	1980	39
F3	473	60
F4	12	<10

Note: Value in bold indicates the soil remediation guideline is exceeded.

Soil PHC Concentration Changes (Day 20 after First Klozur® CR Batch Injection

Comparison of BH06-26 to BH08-56 (Before and After)

Analyte	BH06-26, mg/Kg	BH08-56, mg/Kg	
Benzene	0.11	< 0.005	
Toluene	0.11	< 0.05	
Ethyl Benzene	84	< 0.01	
Xylenes	315	< 0.05	
F1 -BTEX	3630	<10	
F2	4710	51	
F3	1020	34	
F4	<10	<10	

Note: Value in bold indicates the soil remediation guideline is exceeded.

Soil PHC Concentration Changes (Day 19 after First Klozur and Iron-EDTA Injection)

Comparison of CO07-39 to BH08-57 (Before and After)

Analyte	CO07-39, mg/Kg	BH08-57, mg/Kg	
Benzene	< 0.005	0.057	
Toluene	< 0.05	< 0.05	
Ethyl Benzene	7.1	0.95	
Xylenes	< 0.05	1.14	
F1 -BTEX	810	460	
F2	906	2360	
F3	258	844	
F4	<10	16	

Note: Value in bold indicates the soil remediation guideline is exceeded.

Summary and Implications

- Idealized injection ROI rarely occurs and is even more rarely observed the ZOE_{pe} and ZOE_{max} (or ZOE_{time}) concept is more applicable
- Few empirical studies of short and mid-term injectate and by-product distribution (need more and better studies)
 ISCO and ISCO-Bio phases of action are highly dynamic in four dimensions - what is your ROI???

Summary and Implications

- Distribution and migration tracked using visual presence of injectate, heat, sulfate, EC, pH, ORP, DO, TOC/DOC as well as BTEX F1-F4
- Short term ZOEpe non-uniform and variable but geochemical response more uniform-widespread
- Significant mid-term expansion observed that exceeds groundwater advection rate

Summary and Implications

- •Klozur CR performed better then iron-EDTA activated Klozur persulfate
- NAPL presence was not a show stopper
- ZOE_{max} for CR is best determined at later times (e.g., six month to year) and future studies should encompass larger area, more depth, and more discrete intervals

