

n-Hexane, Why is a Separate Guideline Being Developed and Why is it Being Considered for Oil and Gas Impacted Sites?

Presented at:

REMTECH 2008

Presented by: Anthony L. Knafla M.Sc., DABT Jillian Carey, M.Sc., Sunita Ranganathan M.Sc. October, 2008

Presentation Overview

- What is the F1 Fraction?
 - amount of n-Hexane (HX) in the F1 fraction
- F1 Fraction Toxicity
 - include an evaluation of HX
- What drives the risk?
- Why is one of these compounds being considered for removal from the mixture (like BTEX)?
- This talk focuses on the inhalation route of exposure!!

What is the F1 Fraction?

- Default F1 (C_{>6} to C₁₀) Soil Composition (CCME, AENV)
 aromatic PHCs
 - 0% C_7 to C_8 aromatics (B C_6 ; T C_7 ; EX C_8)
 - 9% C₉ to C₁₀ aromatics
 - aliphatic PHCs
 - 55% C₇ to C₈ aliphatics
 - 36% C₉ to C₁₀ aliphatics
- Estimate default vapour composition:
- 0.3% C_9 to C_{10} aromatics
- 88% $C_{>6}$ to C_8 aliphatics
- 11.6% $C_{>8}$ to C_{10} aliphatics
- no default info for HX

* vapour composition estimated using physical/chemical properties for each subfraction

Environmental Data for F1

- <u>Unweathered Product</u>: Gas Stations (PACE, 1987)
- Mass % of F1 Aliphatic Vapours in Breathing Zone of Gasoline Station Workers – more than 85% due to C_{>6} to C₈ aliphatics

Environmental Data for F1

- <u>Weathered Product</u> Gas Stations (Sevigny *et al.* 2003)
- soil vapour concentrations
- 90 to 95% of the vapour mass was C₅ to C₈ aliphatics
- aromatics typically < 1% of the volatile hydrocarbon mass
- Concentrations of HX ranged from 0.006 to 6.7 ppm (0.021 to 24 mg/m3) and represented 0.1 to 3.4% of the total vapour mass
- Significantly lower concentrations of HX compared to PACE (1987) – likely due to weathering

Environmental Data for F1

- Upstream O&G Condensate Sites; Soil vapour probes (EEI)
- Mass % of F1 Aliphatic Soil Vapours (Knafla et al., 1999)
- HX up to ~ 3% of mass COULD DRIVE RISK!

Toxicity Data for F1 Aromatics

- C₇ to C₈ aromatics

• TEX;

- C_{>8} to C₁₀ aromatics

- isopropyl benzene
- high flash aromatic naphtha
- trimethylbenezenes

C_{>6} to C₈ aliphatics

- commercial hexane:
- HX 53%
- 3-methylpentane 16%
- methylcyclopentane 14%
- 2-methylpentane 12%
- cyclohexane 3%
- 2,3-dimethylbutane 1%

– C_{>8} to C₁₀ aliphatics

- dearomatized petroleum frac.
- dearomatized white spirit

Wait a second...

- RfC for $C_{>6}$ to C_8 aliphatics is 18.4 mg/m³
 - based on a commercial hexane mixture containing HX
- the RfC (US EPA) for HX is 0.7 mg/m³
- A BIG DIFFERENCE (26x)!
- Why aren't we seeing the toxicity of n-Hexane?
- Some people have suggested the presence of other C₆ isomers causes antagonism on the neurotoxicity of HX
- MDEP (and other agencies) did not feel that this was appropriate - suggested instead the limit for HX be used for the $C_{>6}$ to C_8 aliphatics
 - such an assumption has significant implications (26x!) crux of today's discussion

Relative Risk

- 3 sub-fractions to assess: C>8 to C10 aromatics; C>6 to C8 aliphatics; C>8 to C10 aliphatics
- look at source proportions, physical properties, toxic potency and determine inhalation risk contribution
- need to explore the toxicity data of commercial hexane

To Make Matters Worse...

- Spencer study (1983) gives contrasting results & supports MDEP
- SD rats vapour concentrations of 500 ppm HX alone or in combination with 500 ppm of other C₆ hexane isomers
 - *i.e.*, HX 50%; cyclohexane 5.4%; methylcyclopentane 30.2%; 3-methylpentane 29.4%; 2,3-dimethylbutane 5%; 2-methylpentane 29.3%; other isomers < 1%
- Exposed continuously (22 h/d; 7 d/w) up to 17 weeks
 - versus intermittently in studies used to develop the RfC
- At weeks 16 and 17, mice had abnormal gaits (characteristic clinical effect of HX), and histopathological signs of nerve damage
 - Generally, similar symptoms onset time for neurotoxicity observed for 500 ppm HX alone or 500 ppm HX plus 500 ppm of other C₆ isomers
 - No neurotoxic symptoms for 500 ppm of the C_6 isomers without HX

Exploring Commercial HX Toxicity

- Daughtrey et al. (1994); Kelly et al. (1994); and Duffy et al. (1991); Dunnick et al (1989) Studies
- SD rats and B6C3F1 mice exposed 6 h/d, 5 d/w, up to 2 yr, to 900 to 9000 ppm (450 to 4500 ppm HX)
- minimal clinical evidence of neurotoxicity –in mice histopathological evidence – axon swelling tibia nerve; Dunnick et al., 1989)
- studies used to determined a RfC of 18 mg/m³

The Toxicity of HX is Significant

- Primary Effects:
- neurotoxicity paralysis of arms and legs, impaired touch and pain senses
- Visual system toxicity, Reproductive toxicity (testicular atrophy)

Teased nerve fibers – HX exposed, gluteraldehyde fixed; Spencer, 1980

Sprague Dawley Rat, hindlimb Paralysis; Schaumberg, 1976

Cross-section – lumbar spinal cord; DMHD exposed rats– example of γ-diketone neurotoxicity; Rosenberg, 1987; C=control; D=exposed

Supported by Human Data

- Mixtures of F1 aliphatic as well as other hydrocarbons
- HX proportion as low as 5% and neurotoxicity observed
 - Sandal makers, Leather coats, Shoe makers, Proofing workers, Tungsten carbide mill, Automotive repair workers (2001)

Study Group	Hydrocarbon	Solvent Composition	Concentration (ppm)	n	Duration (years)	Clinical?	Electro- Phsy?	Source
Sporting Goods Manufacturer	HX	14.1%	110		0.25 to 9.1	Yes		Huang et al., 1989
	Benzene	0.8%						
	Toluene	3.1%						
	Xylene	0.1%						
	others?	81.9%						
Leather Coat or Shoe	HX	47 to 99%	60 to 830	27	4.4 (0.3 to 20)	Yes	Yes	Oge et al., 1994
Production Factories	others?							
Belt Making Shop	HX	5%				Yes		Gaultier, 1973
	pentanes	14%]
	heptanes	80%						
	total		< 5625 (mg/cu.m)					
Brocade Sash Cleaning Shop	HX	12.3%			0.5	Yes		Takeuchi et al., 1975
	pentanes (P)	13.0%						
	heptanes (H)	10.0%						
	octanes (O)	7.5%						
	benzene	3						
	toluene	3.0%						
	unspecified	57.0%						
	total		1250 (mg/cu.m)					
Shoe Factory	HX	15 to 71.6%		122	34.8 (15 to 59)	Yes		Abritti, 1976
	other C6 (CX)	12.7 to 50.4%						
	pentanes	typically low						
	heptanes	18 to 50%						
	toluene	3%						

Continuous vs Intermittent Exposure

- Evaluate mean percent of control MCV (± SE)
- HX inhalation exposures 12 h/d, 7 d/w, 12 weeks (500ppm/d; 1200 ppm/d; 3000 ppm/d) (Huang et al. 1989)
- contrast against 6 d/wk 2000 ppm/d (Ichihara et al. 1998)

P-value - trend was 0.06 with inclusion of a 6 d/wk exposure, and 0.018 if the exposure of 6 d/wk was excluded

Shorter Daily Exposures

- HX exposures compare 12 h/d versus 8 hr/d (amortized)
- MCV ± SE (Takeuchi et al. 1983; Ono et al. 1982; Huang et al. 1989; Iwata et al. 1984

Toxicokinetic Differences

- Knafla and Roth (U of C, Faculty of Medicine)
- SD rats inhalation exposures HX & commercial hexane
- Analyze blood and brain tissue for 2,5-hexanedione (toxic metabolite), varying doses, 6 h/d

Toxicokinetic Effects

- Lower Doses are more Toxic!
- At higher doses, there is non-competitive and competitive inhibition by other C₆ isomers and HX itself
- explains the results of studies used to derive the RfC

Why is HX so Unique??

- Mechanism of Action:
- formation of 2,5-HD
- protein binding
- pyrrole formation
- protein crosslinking via pyrrole bridges
- don't see this with other aliphatics

Ŕ2

So, What are our Choices?

- Ignore HX in most situations
 - Previous approach in US and Canada
- MDEP approach
 - Use the US EPA limit (0.7 mg/m³⁾ for $C_{>6}$ to C_8 aliphatics
- Separate HX from the mixture like BTEX
 - use US EPA limit (0.7 mg/m³⁾ for HX
- Equilibrium comments
 - problem with the US EPA limit
 - could use an alternate limit

Problems with the US EPA Limit

- Equilibrium identified a problem with the US EPA limit
 - Simple error not due to scientific approach
 - Due to data collection, not interpretation
 - Error with the y-axis scale

 Limit should be ~2x greater!

Fig. 2. Changes in motor nerve conduction Velocity (mean \pm SEM). * Significant different from control by Bonferroni's test of multiple group means, p < 0.05

Equilibrium Approach

- OR, use larger dataset generated in Japan
 - Huang et al. 1989; Takeuchi et al. 1980, 1981
 - results in a limit of 3.5 mg/m³ versus 0.7 mg/m³
 - occupational exposures may have lower risks because of intermittent exposure – a limit of 7 mg/m³ would be recommended

21

Analytical Considerations

- Discussions held with labs and research conducted at the U of C
 - HX can be detected as part of a hydrocarbon mixture
 - GC/MS could be used greater certainty
 - GC-FID could be used greater uncertainty

Conclusions

- HX is a significant component of the F1 fraction
- HX has a unique toxicity due to its mechanism of action
- Toxicity occurs in the presence of other F1 hydrocarbons
- HX should not be used as a surrogate for F1
- It should be separated and included with BTEX (BTEHX!)
- HX can be detected as part of a F1 using GC/MS or GC/FID
 Thus, F1 = F1 BTEX HX
- some toxicity limit should be selected to represent HX ²³