

Off-Gas Treatment Carbon Footprint Calculator: Form and Function

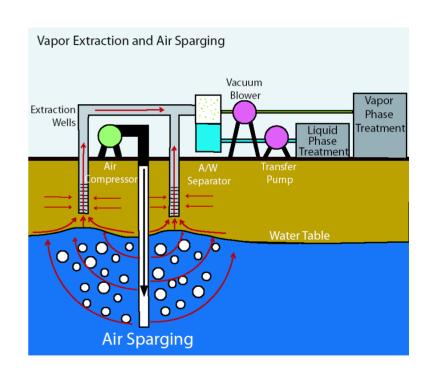
Lowell Kessel from Good EarthKeeping Organization Inc. and Jeremy Squire and Karin Crosby from Haley & Aldrich Inc.


Good Earthkeeping Organization

Advancing Off-Gas Treatment technology

What is carbon footprinting?

It's the measurement of the impact on the environment in terms of the amount of greenhouse gases produced, measured in units of carbon dioxide released directly and indirectly by an individual, organization, process, event or product (Carbon Trust, 2007).



Why Consider GHG Footprinting for SVE?

 Conceptualize the impact to global warming

- Regulatory requirements
- Community action groups
- Years of SVE operation-Emissions are cumulative
- Social responsibility
- Carbon credit value\$\$\$

- Off-Gas Treatment Technologies Review
 - History
- Carbon Footprint Model
 - Form and Function
 - Parameters
 - Assumptions
 - Calculations
 - Off-Gas Treatment Applications
- Resource Conservation
- Three GHG Footprint Case Studies

History of Soil Vapor Extraction

- Duane Knople one of the first to use SVE in 1972 (Thornton and Wootan, 1982)
- 25% of most U.S. <u>soil</u> remediation utilizes
 SVE (EPA, 2000)
- □ 15% of U.S. superfund sites utilizes SVE (FY 82-02; EPA, 2004)
 - ■70% of which uses GAC
 - 25% uses Therm-Ox or Cat-Ox

Carbon Footprint Model

U

- □ Form and Function
- □ Parameters
- □ Assumptions
- □ Calculations
- □ Applications

G.E.O. Inc - Copyright 2008

GHGs Emission Calculations for Off-Gas Treatment Technology Process


Carbon Dioxide					
On-Site Combustion					
	Food	Food			
	Fuel	Fuel	Emission		CO ₂ Emissions
Fuel	Consumption cu ft/vr	Consumption	Factor (kg	metric tons/kg	Subtotal
Diesel	Cu Ivyi	gallons/cu ft yr	CO ₂ /gallon) 10.15	CO ₂	Subtotal 0
Propane	ļ	0.02278	5.70	0.001 0.001	0.00
Motor Gasoline		0.02270	8.87	0.001	0.00
motor caconic	Fuel	Fuel	Emission	0.001	
	Consumption	Consumption	Factor (kg	metric tons/kg	CO ₂ Emissions
Fuel	cu ft/yr	MMBTU/cu ft	CO ₂ /MMBTU)	CO ₂	Subtotal
Natural gas	881882		52.78	0.001	48
	- L	Stationary Comb	oustion Emissio		48
Mobile Combustion		,			
			Emission		
	Annual Miles		Factor (kg	metric tons/kg	CO ₂ Emissions
Fuel	driven	Vehicle MPG	CO ₂ /gallon)	CO ₂	Subtotal
Vehicle - weight 6,000 lbs and less - gas	1733	16.8	8.55	0.001	0.9
Vehicle - weight 6,000 lbs and less - diesel		16.6	9.96	0.001	-
Vehicle - weight 6,001 - 10,000 lbs - gas		13.7	8.55	0.001	-
Vehicle - weight 6,001 - 10,000 lbs - diesel		13.7	9.96	0.001	-
Vehicle - weight 10,001 - 14,000 lbs - gas		10.4	8.55	0.001	-
Vehicle - weight 10,001 - 14,000 lbs - diesel	600	11.8	9.96	0.001	0.5
Vehicle - weight 14,001 - 16,000 lbs - gas		8.9	8.55	0.001	-
Vehicle - weight 14,001 - 16,000 lbs - diesel		10.3	9.96	0.001	-
Vehicle - weight 16,001 - 19,500 lbs - gas (mid-size truck)	1733	8.6	8.55	0.001	1.9
Vehicle - weight 16,001 - 19,500 lbs - diesel (mid-size truck) Vehicle - weight 19,501 - 26,000 lbs - gas	1/33	9.3 7.5	9.96 8.55	0.001 0.001	1.9
Vehicle - weight 19,501 - 26,000 lbs - gas Vehicle - weight 19,501 - 26,000 lbs - diesel		8.3	9.96	0.001	
Vehicle - weight 19,301 - 20,000 lbs - dieser Vehicle - weight 26,001 - 33,000 lbs - gas (full size truck)		7.0	8.55	0.001	
Vehicle - weight 26,001 - 33,000 lbs - diesel (full size truck)	3333	7.5	9.96	0.001	4.4
Vehicle -weight 33,001 lbs and up - gas (big rig)		6.5	8.55	0.001	-
Vehicle -weight 33,001 lbs and up - diesel (big rig)		5.9	9.96	0.001	-
		Mobile Combust	ion Emissions 9	Subtotal =	7.7
Indirect Emissions					
					CO ₂ Emissions
Electricity	Annual KWh		lbs CO ₂ /KWh	lbs/metric ton	Subtotal
On-site	306,600		0.87	2,204.62	121
Off-site			0.87	2,204.62	-
Manufacturer			0.87	2,204.62	-
Mandan	=	•	0.07	0.004.00	

			Indirect Emission	ns Subtotal =	121
Fugitive Emissions					
Contaminant volatilization due to soil mixture by cubic yards	Carbon atoms /mol	Concentration (ppmV)	Cubic YD of soil x minutes of aeration	lbs/metric ton	CO ₂ Emissions Subtotal
Compound Name Sasoline	Carbons/Mol 8			-	_ (
Diesel	12			-	-
			Fugitive Emissio	ns Subtotal =	-
Thermal Oxidation Processing Emissions					
			Constituent	Est. Mass	CO ₂ Emissions
Estimated Time of Remediation (Years)	System Flow Rate (SCFM)		Concentration (ppmV)	of CO ₂ EQ (pounds)	Subtotal (Metric Tons)
1.00	100		4-1		
Compound Name PCE (Tetrachloroethylene)	Carbons/Mol		2,750	32,954	15
Compound Name FCE (Trichloroethylene) FCE (Trichloroethylene)	Carbons/Mol 2 2		2,750	32,954	15
Compound Name Methylene Chloride (DCM; Dichloromethane)	Carbons/Mol 1			-	-
Compound Name HCFCs (Hydrochlorofluorocarbons) Compound Name	Carbons/Mol 2 Carbons/Mol			-	-
DCE (Dichloroethene) Compound Name	2 Carbons/Mol			-	-
CFCs (Chlorofluorocarbons; Freon 113)	1			-	-
Total CO to atmint			Processing Emis	ssions Subtotal =	30
Total CO₂ footprint			Global		207
Other Olice	Hatis Tona		Warming		CO2 EQ
Other GHGs	Metric Tons	···	Potential		Subtotals
CH4 N20	0.006 0.001 SEE BELOW		23 296		0.148 0.23
HFCs PFCs SF6	SEE BELOW	· <u>·</u>	22000		-
	5				
Total GHG footprint					207

Carbon Footprint Model

- □ Form and Function
- □ Parameters
- □ Assumptions
- □ Calculations
- □ Applications

Sources

- World Business Council for Sustainable Development (WBCSD) / World Resources Institute (WRI), 2004
- □ California Climate Action Registry (CCAR), 2007
- The Climate Registry, TCR, 2008
- GHGs listed in the Kyoto Protocol to the United Nations Framework Convention on Climate Change

Parameters

- GHGs listed in the Kyoto Protocol to the United Nations Framework Convention on Climate Change
 - Carbon dioxide
 - Methane
 - Nitrous oxide
 - Sulfur hexafluoride
 - Hydrofluorocarbons (HFCs)
 - Perfluorocarbons (PFCs)

Carbon Footprint Model

- □ Form and Function
- □ Parameters
- Assumptions
- □ Calculations
- □ Applications

G.E.O. Inc - Copyright 2008

Carbon Footprint Model Assumptions

- Direct emissions-emissions generated from technology and its application (e.g. thermal combustion)
- Indirect emissions- emissions consequential to the implementation of the technology (e.g. electricity)
- Focus on on-site off-gas treatment technologies and associated transport
- Complete life cycle of technologies not included (e.g. raw material extraction)
- Stationary and mobile combustion emissions, process emissions and indirect emissions
- Fugitive emissions de minimus

Carbon Footprint Model Assumptions continued

Emission sources

- Stationary combustion emissions
- Mobile combustion emissions
- Indirect emissions
- Physical or chemical processing emissions
- Fugitive emissions
- De Minimus Emissions

Carbon Footprint Model

- □ Form and Function
- □ Parameters
- □ Assumptions
- Calculations
- □ Application

G.E.O. Inc - Copyright 2008

Calculations

Calculation of Mass Removal Rate for SVE

- \square M = Q* (L/ft³) *VOC conc*T
- M = Mass of recoverable contaminant in source area
- Q = Flow Rate in liters
- □ VOC = influent VOC concentration in lbs (convert to lbs by multiplying the VOC in ppmV by the number of moles 165.8 for PCE and 131.4 for TCE) / (mole ratio 24.45)* 0.0000000022
- □ T = time in minutes

Calculations cont.

Calculation for Natural Gas Requirement for thermal oxidizer

- \square Q = \underline{Dw} Qw $\underline{Cp(1.1Tc-The-0.1Tr)-Hw]T}$
- □ Dsf [Hsf-1.1Cp (Tc-Tr)]
- \square Dw = density of waste air stream (usually 0.0739 lb / scf)
- \square Q = total volume of supplementary fuel, CF of methane
- \Box Cp = Mean heat capacity
- \Box Tc = combustion temperature
- □ The = temperature of waste air stream
- \Box Tr = reference temperature, 77degree F
- \Box Hw = heat content of waste air stream, Btu/lb (2,141 for PCE and 3,140 for TCE)
- \Box T = total time of operation, minutes
- Dsf = density of supplementary fuel, lb/scf (0.0408 lb/scf for methane)
- □ Hsf = heating value of supplementary fuel, Btu/lb (21,600 Btu/lb for methane)

1 8

Calculations cont.

18

```
Calculation for Fuel Combustion
```

```
Total GHG emissions = emission factor x fuel consumed x 0.001 (metric tons) (kg / gallon) (gallons) (metric tons/kg)
```

Where,

kg = kilogram

0.001 metric ton = 1 kg

Calculation for Electricity

Total GHG emissions = electricity use x electricity emission factor / 2,204.62 (metric ton) (kWh) (lbs /kWh) (lbs/metric ton)

Where,

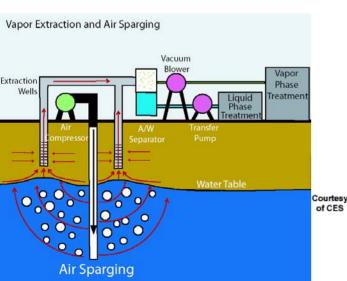
kWh = kilowatts hour

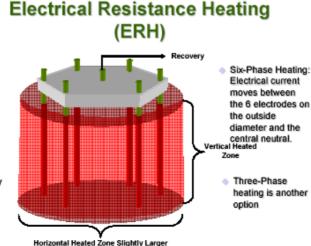
lbs = pounds

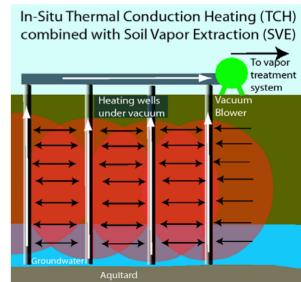
2,204.62 lbs = 1 metric ton

Carbon Footprint Model

- □ Form and Function
- □ Parameters
- □ Assumptions
- □ Calculations
- □ Applications




Off-Gas Treatment Applications



- □ Soil Vapor Extraction (SVE)
- Multi-phase extraction (MPE)
- □ Air/ozone sparge/SVE
- □ In-Situ Thermal Remediation (ISTR) using electrical resistance heating (ERH) or thermal conduction heating (TCH)

Than Array Diameter

Off-Gas Treatment Technologies

Traditional (>95%)

- Granular activated carbon (GAC)
- Direct-flame thermal oxidizers
- Flameless thermal oxidizers (FTO)
- Catalytic oxidizers (Cat-Ox)
- Hybrid thermal/catalytic
- Internal Combustion Engine (ICE)

Non-traditional (<5%)

- Biofiltration
- Vapor condensation
- C³ Technology

System Size:

GHG Footprint Case Studies

200 scfm

	Case Study 1	(Case Study 2	C	Case Study 3
GAC 🗆	400		1,300		1,800
TO 🗆	200		300		800
C3 🗆	150		300		600
rt >	C3 has lowest footpi	>	C3 and TO have equivalent		C3 has lowest footprint
>	Equivalent size systems		footprint Equivalent size systems	>	Thermal system oversized to 600 scfm

100 SCFM

200 scfm

^{*}Annual footprint estimates do not include equipment and component manufacturing

Case Study 3 Footprint Analysis

□ TABLE 1. Carbon Footprint Evaluation

Off-Gas Technology	Carbon Footprint in metric tons of CO ₂	Potential for Resource Conservation
200 SCFM GAC system	~1800	Limited, footprint for mining and consumption of natural resources not quantified
600 SCFM Thermal Oxidation	~800	Limited, footprint for disposal of acid waste not quantified
200 SCFM C3-Technology	~600 G	Moderate to high, if recovered chemical was recycled it would provide a credit to E.O. Inc - Copyright 2008 the footprint

GAC Environmental Impact

- Derived from coal mining (i.e. natural resource) or carbonization of other organic materials
- Transported from distant countries,
 processed, distributed and delivered to sites
- GAC regeneration energy is significant
- Out of State transportation
- = Large carbon footprint

Thermal Oxidation Env. Impact

- Supplemental fuel usage is most significant carbon footprint lever
- □ Direct incineration results in CO2 emissions
 - Potential formation of dioxins and furans and untreated VOCs
 - CO, CO2, and nitrogen / sulfur oxides
- Salts collected from acid scrubber
- Moderate carbon footprint can be high

C3 Technology Env. Impact

- □ Electricity use on-site is most significant factor
- Low to Moderate carbon footprint
- □ No incineration of organics on-site
- VOCs containerized for transport off-site for recycling, reuse or incineration

GAC

Raw materials mining and consumption

Thermal Oxidation

Supplemental fuel required to operate

C3 Technology

- * Electricity usage
- ** Opportunity for reuse / recycle or fuel replacement G.E.O. Inc Copyright 2008

Conclusion

- Carbon Footprint Model
 - Calculator with standard calculations
 - Clearly defined assumptions with boundaries
- □ Resource Conservation
 - Reduce
 - Reuse or recycle or sell\$\$

Questions

