Brownfield Vapor Barriers:

Chemical Compatibility, Testing and Advancements in Material Science

Todd Herrington

Contaminant Vapor Barrier Materials

Over the past five years two materials have generally been considered:

High Density Polyethylene (HDPE)
Spray Applied Asphalt/ Latex

High Density Polyethylene (HDPE)

Excellent Chemical Resistance
 Very Low Permeance To VOCs
 Excellent Durability
 Excellent Constructability
 Cost Effective

High Density Polyethylene

Spray Applied Asphalt/Latex Membranes

Excellent Constructability
 Excellent Durability (w/geofabric)
 Cost Effective
 Excellent Chemical Resistance
 Very Low Permeance To VOCs

Asphalt/Latex

Asphalt/Latex Membranes

Common Composition:

Asphalt/ Latex Emulsions (bitumen/polystyrene) with clay or carbonate "builders"

Spray Applied with CaCl₂ Solution

All of these Compositions are Lipophilic •Tend to Adsorb VOC Vapors

VOC Transport Across Membranes

VOC Transport Across Membranes

Permeance of VOCs Across Membranes

Time

7-day Hexane Weight Gain Vapor Test (ASTM D 543)

Composition

		Compoo		
Ingredient		(%)		ШШ
Bitumen	72.2	71.7	72.2	66.2
PSL	18.1	17.9	18.1	16.6
CaCl2	0.7	1.4	0.7	0.7
CaCO3	9.0	9.0	0.0	16.6
Bentonite	0.0	0.0	9.0	0.0

% Weight Gain 15.0 12.5 14.1 10.9

Development of Improved Vapor Barrier

Q: How to improve chemical resistance of spray applied asphalt/latex?

A: <u>Use HDPE to Encapsulate the asphalt/latex in</u> <u>a Composite Membrane</u>!

Development of Geo-Seal[™]

Composite membrane¹ was best of both worlds:

Chemical Resistance & Low Permeance of HDPE

 Constructability and low cost of Spray Applied Membrane

¹Patents Pending (US and international)

HDPE/Polyolefin Hybrid 1

Geo-Seal CORE

Spray Applied Copolymer Modified Bitumen/polystyrene

Geo-Seal Vapor Vent HDPE Vent System

Solvent Exposure Testing

- PCE Saturated Vapors on One Side of Membrane
- 7 Day Test

Solvent Exposure Testing Modified ASTM D-543*						
	Pre-Test Weight (g)	Post-Test Weight (g)	Weight Gain			
Asphalt/ Latex	4.24	4.7	10.80%			
Geo-Seal™	3.87	3.95	2.10%			

*Intertek Laboratories, Foxboro Mass. 2008

Solvent Exposure Testing

Results Indicate:

 Geo-Seal is 5X more resistant to VOC partitioning than simple asphalt/Latex membranes

This is a result of HDPE encapsulation

Permeation/Diffusion Testing

Q: How to Accomplish Permeability Testing?

Others have reported Permeance/Diffusion Rates without considering VOC partitioning.....

- Very suspect methodology
- Overtime these rates may increase as membrane becomes saturated

Permeation/Diffusion Testing

Estimating the permeation rate solely on the amount of VOC that passes through a geomembrane surface area per unit time is <u>incorrect</u> for it does not account for partitioning...

Park, J.K., J.P. Sakti, and J.A. Hoopes. 1996. "Determination of Volatile Organic Compound Permeation Through Geomembranes". Volatile Organic Compounds in the Environment, ASTM STP 126, W. Wang. J. Schoor, and J. Doi, Eds., American Society for Testing and Materials, 1996, pp. 245-258.

Q: How to accomplish Permeability Testing?

A: <u>Saturate</u> the membrane Prior to Testing.

 Removes concern about partitioning impacting permeance

Represents Long Term resistance requirement

ASTM F 739: Standard Test Method for Permeation of Liquids and Gases through Protective Clothing Materials under Conditions of Continuous Contact

After: Chao, K.P., P Wang, and C.H. Lin, 2006. Estimation of Diffusion Coefficients and Solubilities for Organic Solvents Permeation through High-Density Polyethylene Geomembrane. *Journal of Environmental Engineering*. ASCE, May, 2006 pp519-526.

- 24 hour saturation period
- 8 hour permeation period w/ Gas VOC
- Double compartment apparatus

Results of Comparative Permeation Testing						
under Gaseous VOC Challenge*						
Barrier Material	VOC Contaminant	Breakthrough Time (minutes)	Steady-State Perm Rate (ug/cm2/min)			
Asphalt/ Latex	PCE	450	5			
Geo-Seal	PCE	No Breakthrough	<0.01			
*Intertek Laboratories, Foxboro Mass. 2008						

Results of Gaseous Challenge Indicate: Geo-Seal:

Resisted Permeance Breakthrough
 Asphalt/Latex did breakthrough with significant VOC permeance

Application and Sealing of BASE Layer

Application of CORE

BOND Layer Under Steel

VaporVent Low Profile Gas Collection and Vent System

QA/QC Measures

Manufacturer and 3rd party inspection
Coupon sampling
Depth Gauge testing
Applicator network
Smoke testing
Other factors:

Color of the membrane
Multiple layers of redundancy

Competitive Warranty

635 S. Hobart Street. Los Angeles, CA

Center for Jewish Life. Palo Alto, CA

Excellent Chemical Resistance
 Very Low Permeance To VOCs
 Excellent Constructability
 Excellent Durability
 Cost Effective

www.landsciencetech.com

