

Optimizing In-situ Chemical Oxidation of Residual DNAPL: Geochemical Controls and Sediment Oxidant Demand

Dr. Niels Hartog Deltares-TNO/University of Waterloo

Suzanne van der Meulen – Deltares-TNO Beth Parker – University of Guelph/University of Waterloo Lisa Cavé – University of New Brunswick Tom AI – University of New Brunswick

Towards effective source zone remediation

FULL SERVICE DRY CLEANERS

Borden DNAPL Infiltration (BDI) Site

50L DNAPL infiltration

8 April 1999 DNAPL Day: 1

3D "Homogeneous" Aquifer

Photograph laten with an LE nes large. Photo by Sana Thomson, 2021.

Thomson (MSc Thesis, 2004)

Remaining Mass in Source Zone

DNAPL pore saturation variability

Permanganate Injection Overview

Modeling Permanganate Oxidation Reactions (PHREEQC)

Oxidation Reactions with MnO4

12 H⁺ + $C_9H_{10}O_5$ + 12 MnO4⁻ → 11 H₂O + 9 CO₂ + 12 MnO₂

niels.hartog@deltares.nl

> 95% MnO4 consumed by sediment! Deltares

PCE Concentrations in MLWs

Before 1st Injection

After 1st Injection •Plume size reduction

Deltares

niels.hartog@deltares.nl

Canada $\leftarrow \rightarrow$ The Netherlands

Deltares niels.hartog@deltares.nl

Overview contaminated Sites in The Netherlands

Site Characteristics		Occurrence
		(% of to-
15,000 most urgent sites		tal)
Contaminant	C.1 Chlorinated Hydrocar-	45
type (C)	bons	
	C.2 Aromat-	45
	ics/Oil/MTBE/Cyanide	
	C.3 Other	10
Geo-hydrology	G.1 Permeable (sandy)	45
(G)	G.2 Layered, permeable	45
	and impermeable layers	
	G.3 Other	10
Built Environ-	B.1 Urban	70
ment (B)	B.2 Industrial	25
	B.3 Other	5

Holland In-Situ Proeftuin

Deltares

niels.hartog@deltares.nl

Optimizing the ISCO remediation of Chlorinated Solvents

Overview Contaminated Site

50% : 50%

0.001MOL/L

9.1MOL/L

Fenton's Reagens

Permanganate

Rates of contaminant oxidation with MnO4

Ref: Waldemer, R., Determination of the Rate of Contaminant Oxidations by Permanganate: Implications for In Situ Chemical Oxidation (ISCO), M.S. Thesis, Oregon

Deltares niels.hartog@deltares.nl

Natural and Contaminant Oxidant Demand

Factors:

Contaminant Oxidant Demand

Mass, Volume, Distribution

Sediment Oxidant Demand (SOD, NOD)

• Geochemistry, Heterogeneity

Groundwater Oxidant Demand

• Groundwater composition, Redox status, Groundwater flow

Soil Samples for Geochemistry and Reactivity

Total Reduction Capacity vs. Oxidant Demand

niels.hartog@deltares.nl

Remediation Efficiency

Assessment of critical parameters: simplified

$$Oxidant_{req} = \begin{pmatrix} Oxidant_{cont} + Oxidant_{NOD} \\ Oxidant_{stab} \end{pmatrix}$$
Main Assumptions:
•Direct injection in NAPL zone, no travel
•Oxidant reacts with NOD first, no competetion (worst case)
•Constant degree of decomposition
•Constant degree of decomposition

Cost-effectiveness (kg/m³ × €/kg)

Conclusions

- Oxidant specific NOD tests should be performed, due to different reaction mechanisms for different oxidants used in ISCO.
- The influence of NOD on oxidation efficiency is especially important for lower contamination degrees.
- At higher contamination degrees, oxidant stability becomes the dominating factor for ISCO efficiency.
- Remedial ISCO strategies only be based on sitespecific cost-effectiveness determinations.
- Source zone characterization crucial for cost-effective optimization of remediation strategy

Videocone: Take a peak in the black box

