Terra-Tech Remediation Ltd. & Earth Brick International Inc.

Removing hydrocarbons from soil more cost effectively than other conventional thermal technologies is now further enhanced when you can create viable recycling alternatives.

Executive Summary

- Remove the Hydro-Carbons
- Look at recovering the gases VS burning them
- Take soils that have metals and salts add the required additives to create benign bricks
- The blending of these two technologies has the potential to address cost, speed and future liability
- Regulatory frame work is questionable

Background

- The most common methods of remediation have historically involved contaminant transfer (landfill, landfarm, injection)
- Thermal Desorption is a long proven method of "insitu" remediation which is proven more expensive than the most conventional methods of contaminant transfer
- Is industry motivated to pay a premium for a cleaner result

The Project

Phase One

- To remove and collect liquids from contaminated soil for recycling
- To collect operational data to provide real hard cost data

Registration

PROVINCE OF ALBERTA

R.S.A. 2000, c.E-12, as amended

ROTECTION AND ENHANCEMENT ACT

- To verify and refine process flow with different contaminated soil profiles
- To look closely at the viability of gas recovery

The Project

Phase Two

Alberta
Registration
PROVINCE OF ALBERTA
ENVIRONMENTAL PROTECTION AND ENHANCEMENT ACT R.S.A. 2000, c.E-12, as amended.
225205-00-00

- To determine cooling process, rehydration requirements and timeline required to create bricks
- To determine additives required for different soil profiles
- To test the structural integrity of the bricks (compression and shear)
- To emboss the bricks for tracking purposes

Operational Issues

- Characteristics of the Target Soil
 - Coarse VS Fine Soils
 - Screening soils
 - Moisture Levels
 - Clay and wet soils work but slow the process
 - Distribution of Hydrocarbon Content
 - Spikes are not a concern due to the camber design
 - Co-contaminant Levels
 - Wash cycle and tank afford a second / third process stage for added treatment(s)

Inventors & Partners

- Mr. Earl Gingras, Inventor/Operator,
- Mr. Jim Kuhnen, Steel Fabrication and Design,
- Dr. Norman Arrison, P.Eng., Ph.D., M.Sc., B.Sc. our resident scientist.

Forecasting Outcomes

- Soils Thermal processing can be simulated in a lab retort test
- Gases Introducing additives during the water wash cycle may change the exhaust gas from the heat chamber
- Construction Bricks

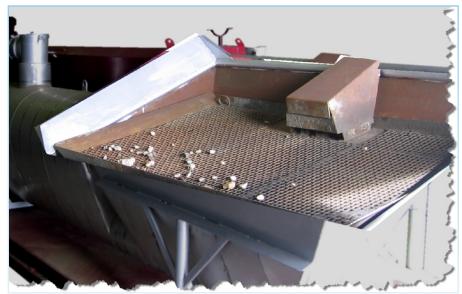
Operating Costs

- Soil Profile & Costs
- Variable Costs
 - Fuel consumption for cogeneration of heat
 - Filter media (5 and 0.3 Micron)
 - Water required to rehydrate soil
- Recovery / Offsetting of Costs
 - Hydrocarbon liquids
 - Bricks

KAG-1000 Performance

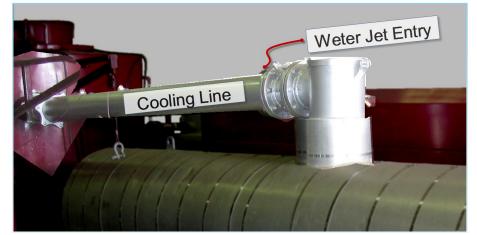
- Heat Generation
- Cooling & Condensing
- Gases
- Liquid & Soils
- Gas Collection
- Liquids Collection
- Air Emissions

KAG-1000 Performance


- Heat Generation
- Soil is sorted
- Cooling & Condensing
- Gases
- Liquid & Soils
- Gas Collection
- Liquids Collection
- Air Emissions

Independently controlled electric elements and hot exhaust gases from the self contained electric generation unit.

KAG-1000 Performance


- Heat Generation
- Soil is sorted
- Cooling & Condensing
- Gases
- Liquid & Soils
- Gas Collection
- Liquids Collection
- Air Emissions

KAG sorts materials prior to moving soils into the heat chamber.

KAG-1000 Performance

- Heat Generation
- Soil is sorted
- Cooling & Condensing
- Gases
- Liquid & Soils
- Gas Collection
- Liquids Collection
- Air Emissions

Adding water to the gases brings gases to near ambient at the tank.

KAG-1000 Performance

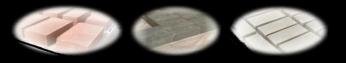
- Heat Generation
- Soil is sorted
- Cooling & Condensing Gase
- Liquid & Soils
- Gas Collection
- Liquids Collection

• Air Emissions

The exhaust gas from the chamber is transferred to the tank to condensed into a recyclable liquid.

KAG-1000 Performance

- Heat Generation
- Soil is sorted
- Cooling & Condensing
- Gases
- Liquid & Soils
- Gas Collection
- Liquids Collection
- Air Emissions


Emissions			
VOC expressed by speciation			
Total VOC's			
mg/m³ wet	84.05		
grams/hr	39.335		

Earth Brick Performance

- Supply Auger
- Screening Hopper
- Additives Mixer
- Chamber Auger
- Ram

