Successful field and laboratory tests of advanced phytoremediation systems for decontamination of petroleum and salt impacted soils Bruce Greenberg, X-D Huang, K Gerhardt, J Gurska, X-M Yu, G MacNeill, X Lu, J Nykamp, B Glick, W Wang, H Wang, S Wu, N Knezevich and P Gerwing

<u>Partners:</u> Imperial Oil; Talisman Energy; TAQA North; PennWest; EBA, Seaway Project Manament; Stantec; Northwind; TerraLogix; Strata Environmental; Shell; Wardrop; Matrix Solutions, NSERC

Outline

- **1. Advantages of phytoremediation**
- 2. Overview of our phytoremediation system
- 3. Field tests of our phytoremediation system for petroleum and salt remediation

Examples of remediation methods

- Dig and dump Any contaminant type \$200-600/m³
- Soil incineration On or off site Organic contamination \$600-800/m³
- Chemical extraction Any type of contamination -\$300/m³
- Electrokinetic separation Metals/Salts \$200/m³
- Soil flushing/fracturing Any contaminant type-\$250/m³
- Land farming Natural attenuation Small organics \$50/m³
- Bioremediation Organics \$100/m³
- Phytoremediation Any contaminant type -\$75/m³

Advantages of Phytoremediation

- 1. Improves the natural structure and texture of soil
- 2. It is driven by solar energy and <u>suitable to most</u> regions and climates
- 3. It is <u>cost effective</u> and technically feasible
- 4. <u>Plants</u> can provide <u>sufficient biomass</u> for rapid remediation; <u>promote high rhizosphere activity</u>
- 5. Restoration in a reasonable time frame 2 to 5 years
- 6. Can be used effectively at remote sites
- 7. > 30,000 sites in Canada where such technology is needed, > 300,000 sites in the US

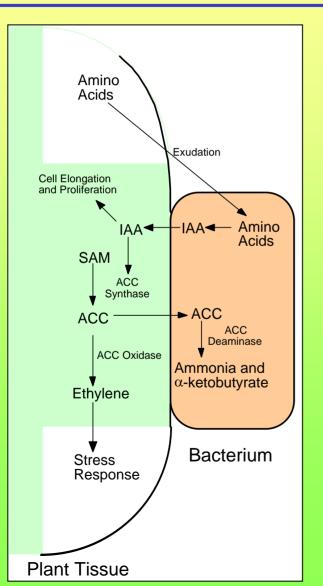
Development and Proof of PGPR Enhanced Phytoremediation Systems (PEPS)

Over 10 years of research with field studies at each stage of development

- 1. PHC, Imperial Oil Land Farm, Sarnia, ON 2004-08
- 2. PHC, several sites in Alberta 2005-08
- 3. DDT, Simcoe, ON 2005-07
- 4. Brownfield, Toronto, PCBs, PAHs & metals 2007-08
- Fully remediated a gas station site in 1 summer (2007) – Gary Millard - Next talk
- 6. Salt, Saskatchewan, Alberta and Northwest Territories 2007-08

Description of the PGPR Enhanced Phytoremediation Systems (PEPS)

Physical soil treatment:


Till the soil: exposure to sunlight and air Exposure to sunlight photooxidizes contaminants

Bioremediation: Inoculation of PAH/PHC degrading bacteria (generally skipped in the field \rightarrow already present)

Phytoremediation: Growth of plants with PGPR

- **PGPR:** Plant growth promoting rhizobacteria.
- Prevent the synthesis of stress ethylene.
- <u>PGPR</u> are applied to the seeds prior to sowing \rightarrow NOT Bioaugmentation

Interaction of a PGPR containing ACC deaminase with a plant seed or root

Plant growth promoting rhizobacteria (PGPR)

Natural, non-pathogenic strains PGPR (usually *Pseudomonads*)

We have isolated PGPRs from ON, AB, SK and the NWT

PGPR are applied to seeds prior to planting

Research and Development of the PEPS for PHC Remediation

- Sarnia, ON Land farm 4 year study
- 2. Turner Valley, AB 3 year study
- 3. Hinton, AB 2 year study

Imperial Oil Sarnia Land Farm – 2004-07

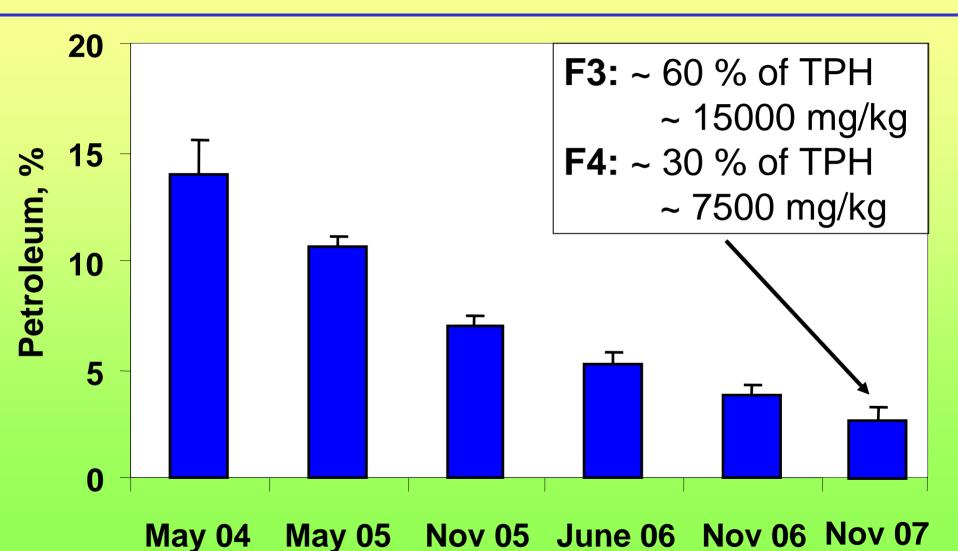
-

-

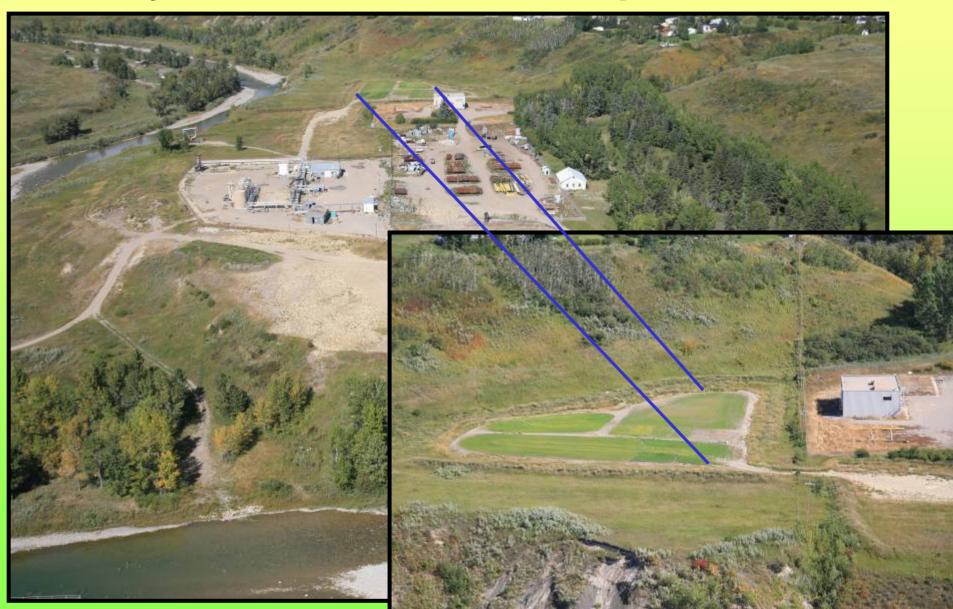
Fall Rye overseeded Rye/Fesc/Barley with Rye/Fescue + PGPR + PGPR

Des Par

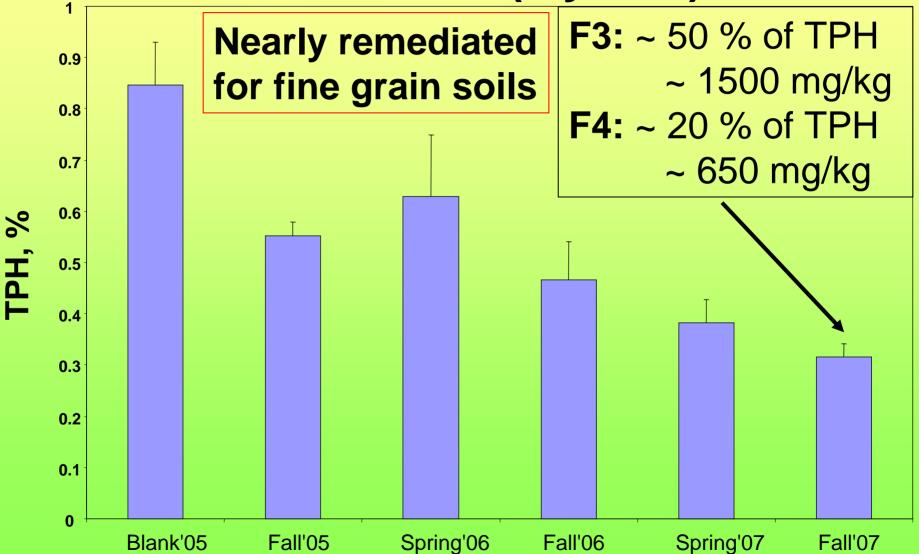
June 19, 2006


Imperial Oil Sarnia Land Farm

- Planted Barley/Fescue/Rye Grass
- Plants were treated with PGPR (UW3 and UW4) using a mechanical seed treater

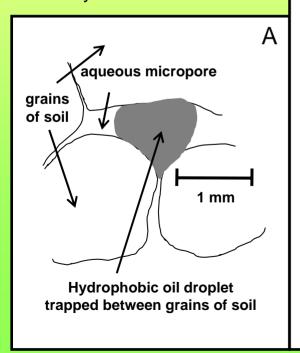


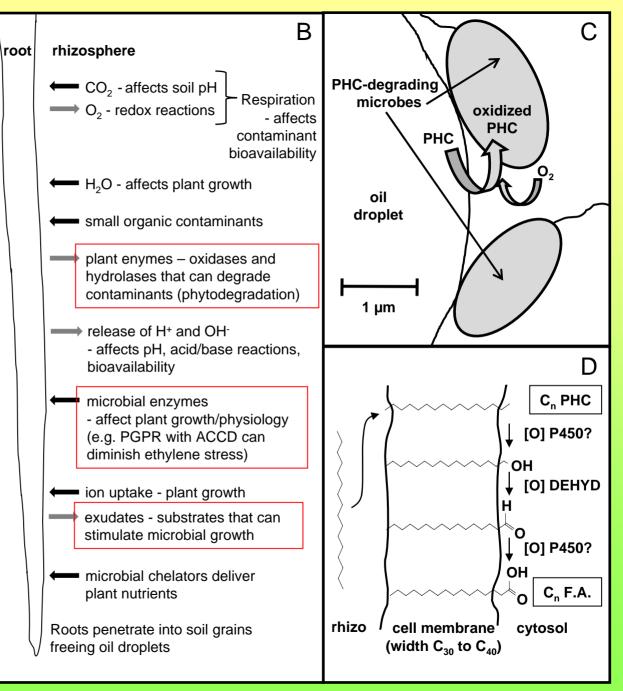
40 days after planting


Petroleum Remediation 2004 to 2007 at the Sarnia Land Farm

Turner Valley, AB Phytoremediation of a biopile 2005-07

Turner Valley TPH remediation from 2005 to 2007 (3 years)

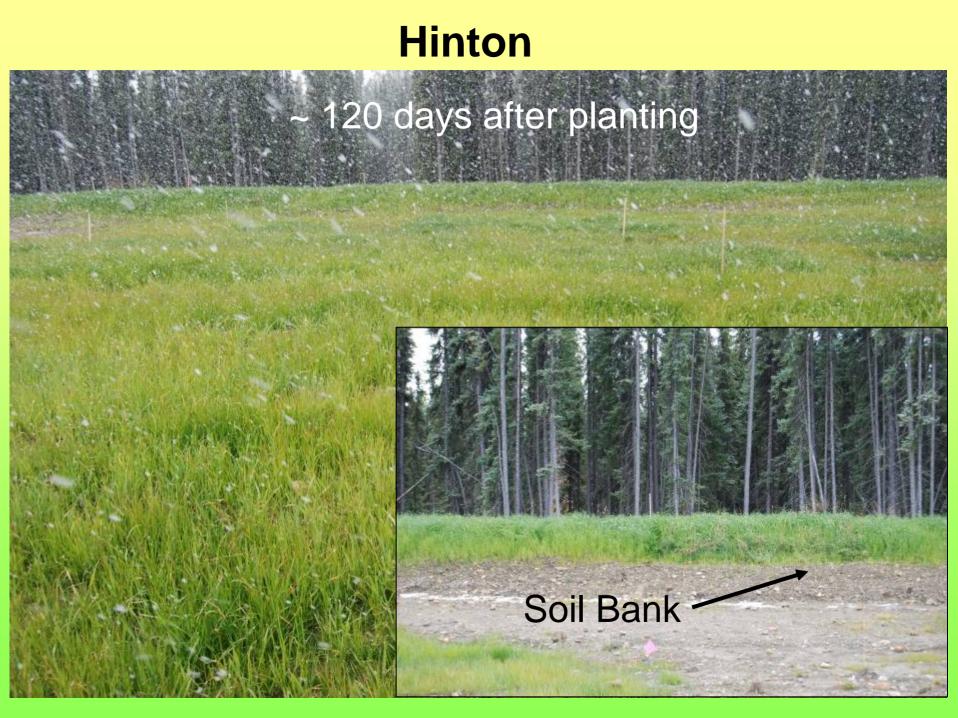



Conclusions on Development of the PEPS

- 30 to 100 % improvement in plant growth with PEPS
- 30 to 40 % remediation per year
- Rhizophere activity (esp. PHC degraders) elevated 10 to 100 fold with the PEPS
- Very low ¹⁴C in detected in soil microbial fatty acids Carbon came form PHC metabolism as PHC has no ¹⁴C
- Very low ¹⁴C in CO₂ that evolves from soil PHC has been mineralized to CO₂
- No PHC is detected in plant tissue as it disappears from the soil
- Developing advanced GC-MS techniques Tracking of biomarkers as measures of PHC remediation – e.g. showed hopanes and chrysenes are degraded

Phytoremediation of PHC

(A) Bioavailability of PHC
(B) General processes
affecting rhizoremediation
(C) Microbial aerobic PHC
degradation – rhizosphere
supported by plants
(D) Possible microbial
oxygenation pathway of PHC to
form a fatty acid


Application of the PEPS for PHC Remediation – Proof of Concept

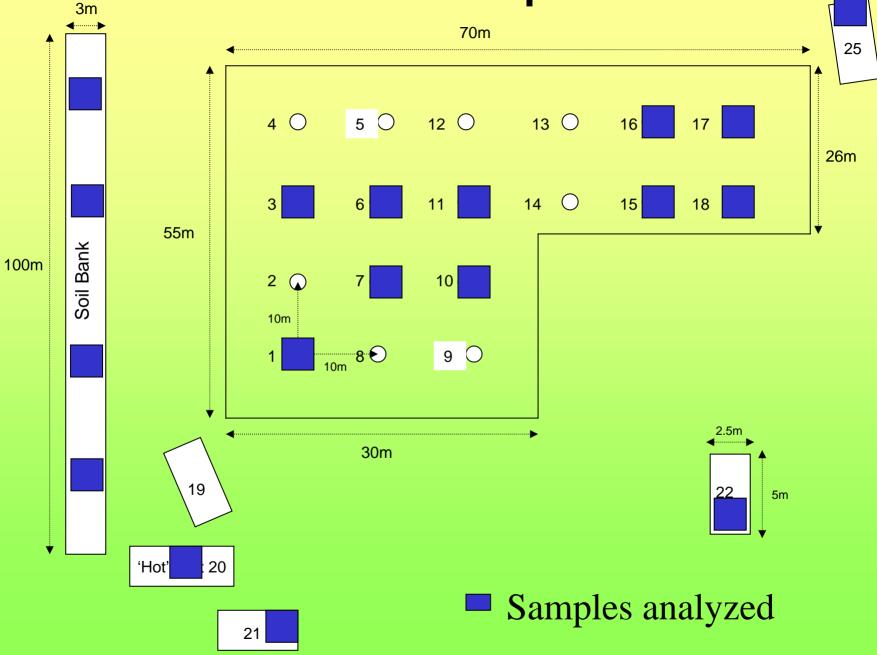
- All sites planted with Oats, Tall Fescue and Rye grass treated with PGPR
- Hinton 1, AB 1st year of a full scale remediation
- 2. Hinton 2, AB 2nd year of a full scale remediation
- 3. Edson, AB 2nd year of a full scale remediation
- 4. Peace River, AB 2nd Year of a full scale remediation

Hinton - Full Scale Use of the PEPS,

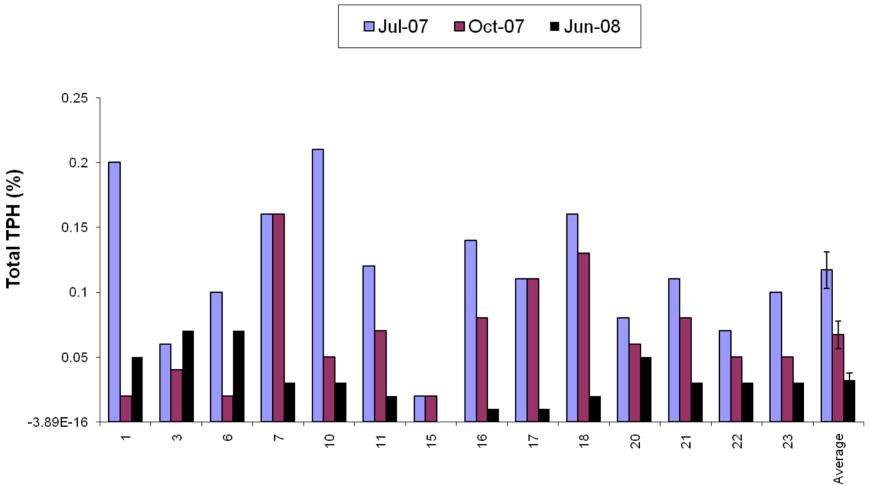
Invert Drilling Mud – Wood chips With Neil Reid at EBA

Hinton

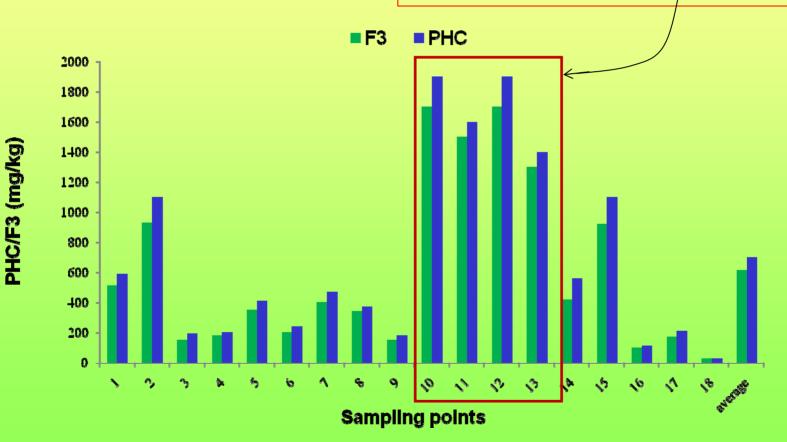
June 25, 2008



August 7, 2008



Hinton Map

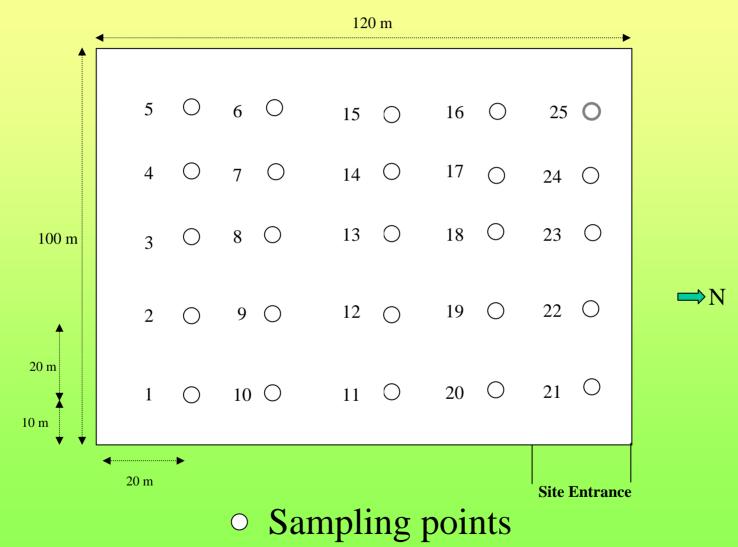

Phytoremediation at Hinton 2

Sampling Points

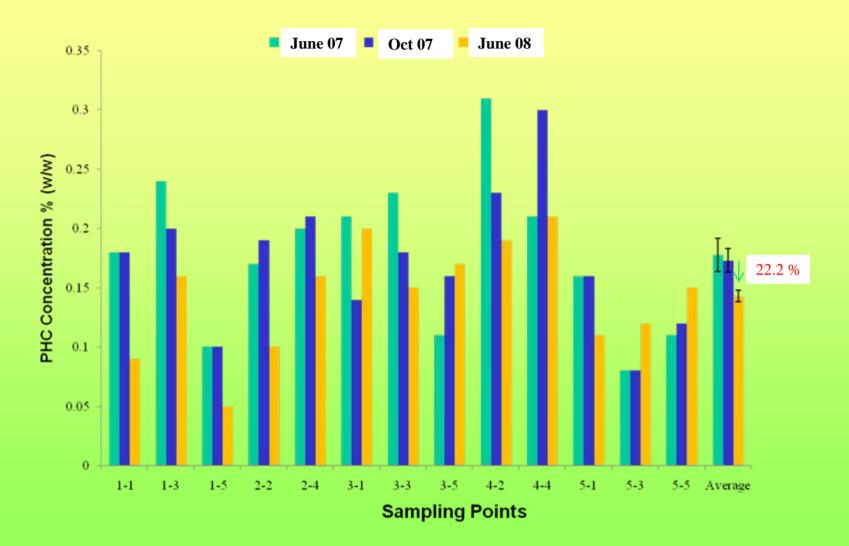
F3 Phytoremediation at Hinton 2 (Start of season, June 2008)

These 4 points are located in the site soil bank Only 2 above Tier 1 standards in June 08 Should reach Tier 1 standards at end of 2008

Edson – Diesel Invert June 5, 2008 Tilling Planting



July 31, 2008


With Perry Gerwing and Glen Pullishy at Earthmaster

Edson site, AB

Contaminant: TPH **Area**: $120 \times 100 = 12000 \text{ m}^2 = 3 \text{ acre}$

Edson Site PHC Remediation

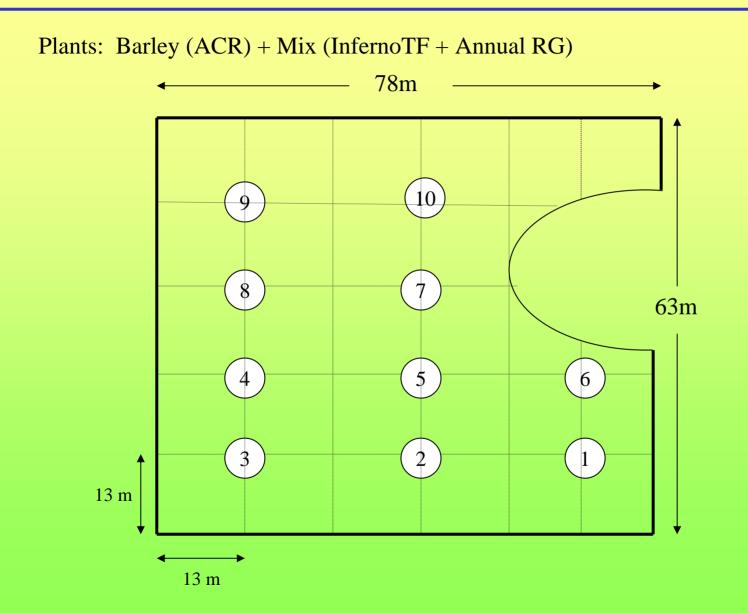
~ 70 % F3. Site may be fully remediated at end of the season.

Peace River Full Scale Use of the MPPS, 2007

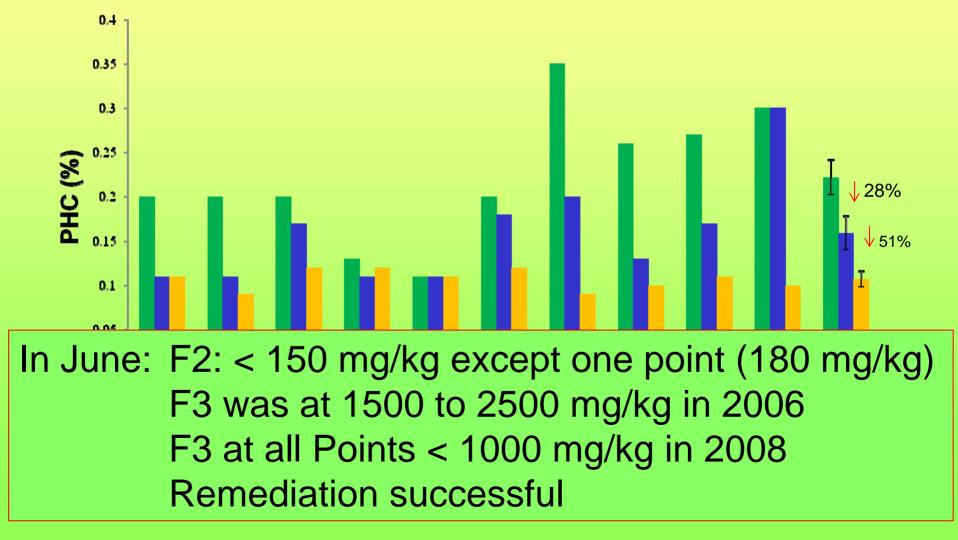
June 2007 before planting and t₀ sampling

With P Gerwing at Earthmaster and M Lansing at TerraLogix

Peace river site



June 19, 2008


Oct 1, 2008

Peace River Full Scale Use of the MPPS, 2007

Peace River PHC Remediation

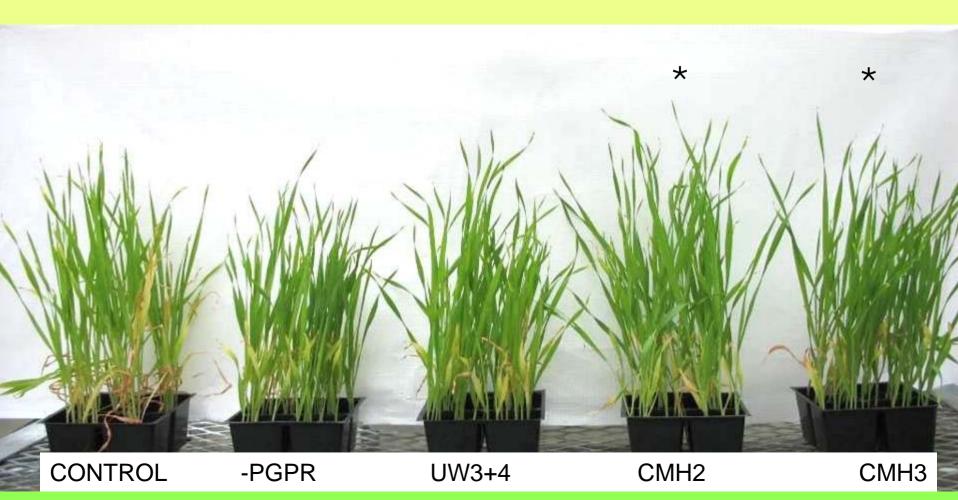
Jun-07 Oct-07 Jun-08

Bottom Line from Application of the PEPS

- Fine grain soils with F3 from 2000 to 10,000 mg/kg
 - Site can be phytoremediated in 2 to 4 years
 - Tier I standards can be met using CCME methods
- Fine grain soils with F3 above 10,000 mg/kg
 - Site can be phytoremediated in 3 to 6 years
 - Tier II approach may be required to differentiate petrogenic hydrocarbons from phytogenic hydrocarbons
- Coarse grain soils with F3 above 3000 mg/kg
 - Phytoremediation will bring petroleum hydrocarbons down significantly
 - However, a Tier II approach may be required because remediation targets are very low and phytogenic hydrocarbons could interfere with analyses

Development of the PEPS for Salt Impacted Sites

Plant responses to salinity

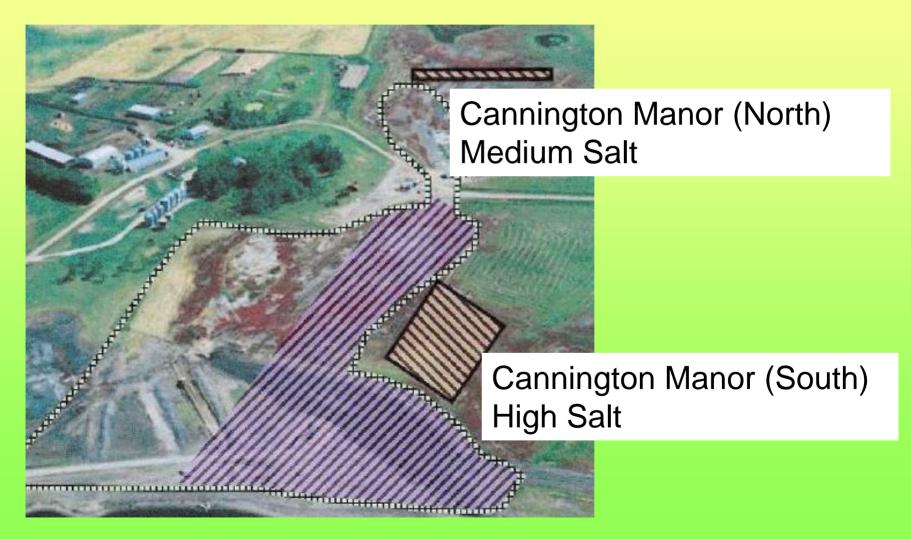

- Inhibited germination
- Decreased water uptake → Low water potential (drought)
- Unbalanced sodium/potassium ratios
- Inhibition of photosynthesis
- Increased reactive oxygen species (ROS)
- Increased <u>ethylene production</u>

Salinity Effects mostly negligible (or salt deprived)	Yields of very sensitive crops may be restricted	Yields of many crops diminished	Only tolerant plants grow	Only a few very tolerant plants can grow
0	2 4	4 8	8	16
EC. (dS/m)				

Sites for Development of the PEPS for Salt Remediation

- 1. Cannington Manor, SK
- 2. Alameda, SK
- 3. Kindersley, SK
- 4. Brezeau, AB
- 5. Norman Wells, NWT

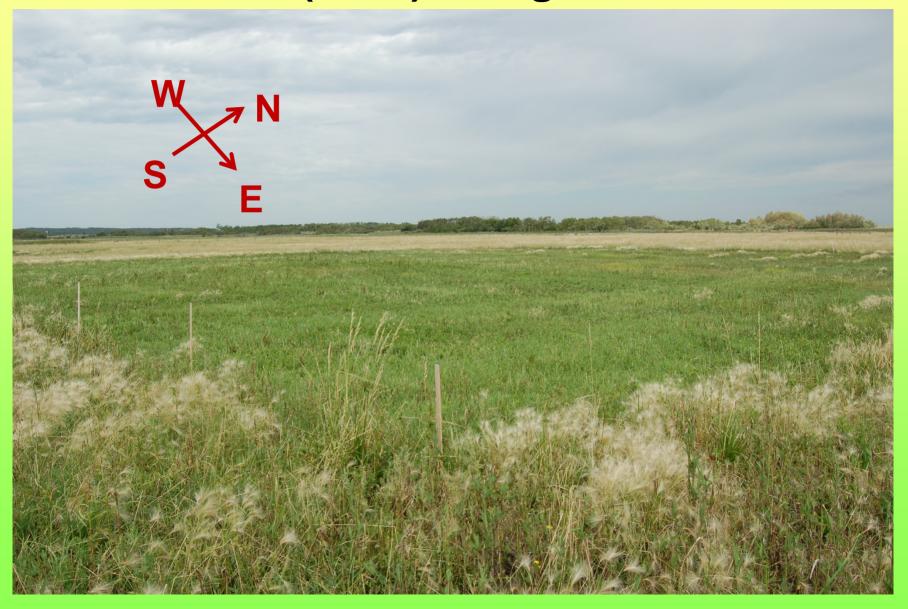
Barley – Lab Work Example Saskatchewan High Salt Soil EC = 18 dS/m , SAR = 11, CI = 2000 mg/kg



Lab Research Summary of the PEPS for Salt Impacted Soils

- 50 to 100 % increases in plant growth due to PGPR
- Plants can grown on soils with ECe ~ 25 dS/m
- ON, SK and NWT PGPRs all worked well
- PGPRs protected against inhibition of photosynthesis and plant membrane damage
- Levels of salt up-take to plant foliage: 60 to 80 g NaCl per kg dry weight
- Phytoremediation is feasable: For soils with ECe of 15 to 20 dS/m in about 5 yrs

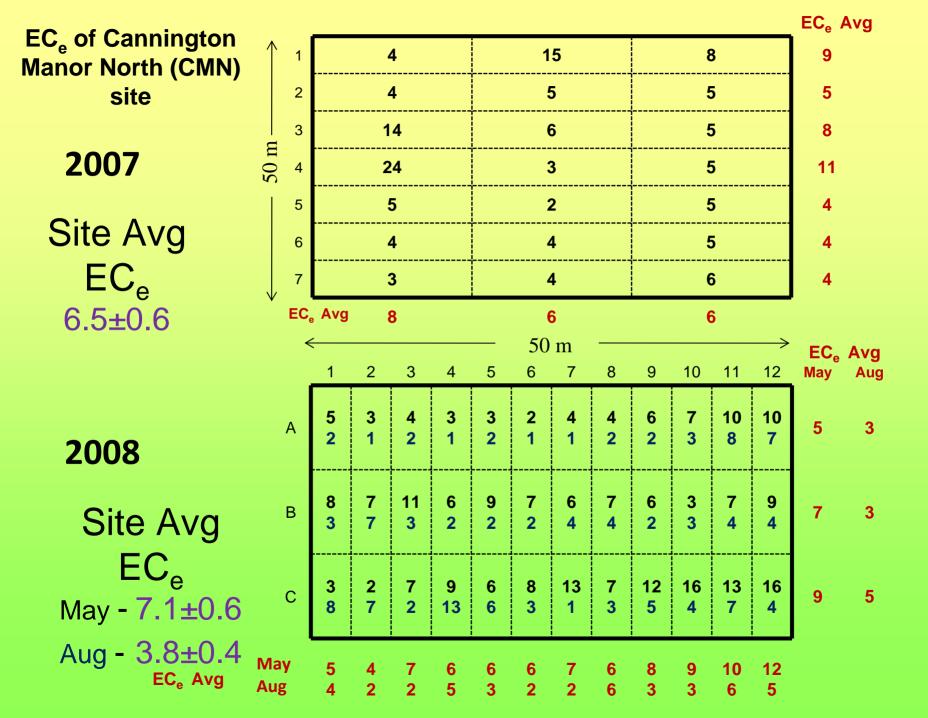
Field Work


Cannington Manor sites

Characteristics of soils

Parameters\Sites	CMN	CMS	AL
рН	7.9	7.9	7.8
Organic matter (%)	14.1	10.2	7.9
Texture	Silt loam	Loam	Loam
EC _e (dS/m) Avg	7.1	14.5	27.0
Highest EC _e (dS/m)	16.6	32.2	45.3
SAR	17	12	18
Na (mg/kg)	2200	4350	2800
CI (mg/kg)	1900	6500	5700
Mg (mg/kg)	19800	18700	6700
Ca (mg/kg)	7400	116000	18000
K (mg/kg)	1440	1260	2250
B (mg/kg)	36	47	15

Cannington Manor North – Med. Salt (CMN) – Aug 08


Plant growth on Cannington Manor North (CMN) – 3 months Tall wheatgrass

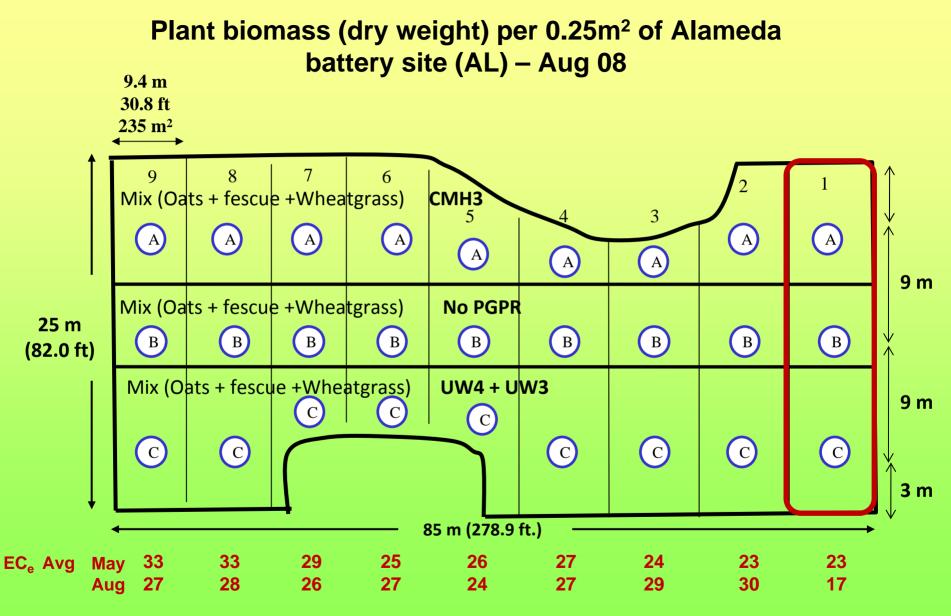
No PGPR $EC_e = 9 \text{ dS/m}$ $DW(g)/0.25m^2 = 23 \text{ g}$ Salt (NaCI)/DW = 18.1 g/kg

CMH3 EC_e = 8 dS/m DW(g)/0.25m² = **58** g Salt (NaCI)/DW = **21.5** g/kg

Cannington Manor South - High Salt (CMS) – Aug 08

Plant growth on Cannington Manor South (CMS) – 3 months Oats + Inferno tall fescue + Tall wheatgrass

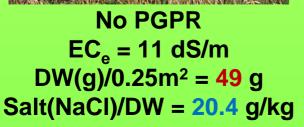
No PGPR $EC_e = 3 \text{ dS/m}$ $DW(g)/0.25m^2 = 40 \text{ g}$ Salt(NaCl)/DW =20.0 g/kg


UW4+UW3 EC_e = 5 dS/m DW(g)/0.25m² = 55 g Salt(NaCI)/DW =16.0 g/kg CMH3 EC_e = 5 dS/m DW(g)/0.25m² = 40 g Salt(NaCI)/DW =23.6 g/kg

EC_e of Cannington Manor South (CMS) site

2007	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
2007	13	6	6	6	6	16	23	26	22	28	26	23	35	23	22	18	
Site Avg EC _e	6	7	5	7	8	14	20	16	23	25	24	36	38	14	25	15	- 15 m —
17.6±1.4	8	8	6	6	10	15	13	17	16	12	17	36	36	13	18	31	
EC _e Avg	9	7	6	6	8	15	19	20	20	22	22	32	36	17	22	21	
2008	<u></u>		2	3	4	Ļ	5	90 1 6	m 7	 {	3	9	10	1	1	→ 12	
Site Avg EC _e ^A	5 5		3 3	5 5	2 2	1		26 25	24 19	2 2		18 26	17 19	29 33		14 23	
May - 14.5±1.6 в	4 7		4 5	5 6	7 2	1 1	4 1	12 17	31 18	2 1		12 17	32 31	20 19		15 20	- 15 m
Aug - 15.2±1.6 c	5 4		2 2	5 10	3 3) 3	16 23	18 12	- i	3 5	17 17	32 37	2 [°] 2	- i -	232 4	
EC _e Avg y Au g	5		3 3	5 7	4 2		1 0	18 20	24 16	1 2	9 1	16 20	27 29	2: 2:		17 22	

Alameda battery (AL) – 0.4 Acre



Mix: Oats (common oats)/Inferno tall fescue/Tall Wheatgrass (1:1:1)

Plant growth on Alameda battery- 3 months Oats + Inferno tall fescue + Tall wheatgrass

UW4+UW3 EC_e = 24 dS/m DW(g)/0.25m² = **30** g Salt(NaCl)/DW = 26.2

CMH3 EC_e = 34 dS/m DW(g)/0.25m² = **45** g Salt(NaCl)/DW = **40.6** g/kg

Kindersley – May 29/July 29, 2008 EC_e Values

	1	2	3	4	5	6	7	8	9	10	11	12
May 29 Ec _e = 5.6 dS/m	4.61	2.36	3.22	3.58	4.80	4.08	3.00	4.09	0.33	4.31	1.31	6.07
	3.90	10.37	9.69	6.07	8.33	7.47	10.14	4.80	6.63	8.16	7.49	4.48
	0.96	4.68	5.70	16.09	8.96	8.97	0.67	14.40	7.50	1.36	1.10	2.05

N

July 29 Ec _e = 3.98 dS/m	3.17	2.00	2.95	3.44	3.05	2.75	1.42	3.43	1.32	3.51	3.81	4.86
	2.31	5.16	5.46	5.60	6.29	4.53	5.55	4.04	3.61	6.11	4.74	5.00
	1.54	2.46	5.84	8.30	5.53	4.95	1.29	8.37	5.07	2.57	1.31	1.85

All plots planted with Oats, Tall Fescue and Tall Wheatgrass

Kindersley – Before Planting May 29, 2008

Kindersley – July 29, 2008

Plot 2: – PGPR 25 g DW/0.25 m² Plot 1: CMH3 48 g DW/0.25 m²

Summary of Salt uptake – Oct 2007

Site	EC _e (dS/m)	Block	PGPR	Plant	Na	CI	Na
	19	7	-PGPR	INF	5660	27600	3326
	20	8	UW3+4	INF	5860	32400	3826
CM South	15	6	СМНЗ	INF	4820	26400	3122
CM South	20	9	-PGPR	ОТ	13900	43500	574
	22	11	UW3+4	ОТ	17300	50000	673
	22	10	CMH3	ОТ	13000	35900	489
		Average					460
	9	6-2	-PGPR	BL	18801	36564	553
	3	7-2	UW3+4	BL	18100	32200	503
CM North	21	6-1	-PGPR	BL	8530	22600	311
	25	7-1	UW3+4	BL	17700	55900	736
		Average					508
	22	4	-PGPR	INF	4120	31900	360
Alomoda	18	3	UW3+4	INF	2430	35400	378
Alameda	22	4	-PGPR	ОТ	18000	78700	967
	18	3	UW3+4	ОТ	11000	50600	616
		Average					594

INF: Inferno tall fescue; OT: Baler oats; BL: Ranger barley. Units: mg/kg

Summary of salt uptake in plants Aug 2008 (mg/kg DW)

Site	Plot EC _e (dS/m)	Treatment	Plant	Na (mg/kg)	Cl (mg/kg)	NaCl (mg/kg)	CI/Na ratio
CMN	4	No PGPR	0	8590	19900	28490	2.3
	5	CMH3	0	10100	20400	30500	2.0
	9	No PGPR	WG	3090	15000	18090	4.9
	8	CMH3	WG	3720	17800	21520	4.8
CMS	3	No PGPR	Mix (O+TF+WG)	7270	12700	19970	1.7
	5	CMH3	Mix (O+TF+WG)	8110	15500	23610	1.9
	5	UW3+UW4	Mix (O+TF+WG)	4370	11600	15970	2.7
AL	11	No PGPR	Mix (O+TF+WG)	4840	15600	20440	3.2
	34	CMH3	Mix (O+TF+WG)	7680	32900	40580	4.3
	24	UW3+UW4	Mix (O+TF+WG)	4120	22100	26220	5.4

O = **Common oats**

TF = Inferno tall fescue

WG = Tall wheatgrass

CONCLUSIONS

- The PEPS has great potential for efficient remediation of organic, salt and metal contaminated sites
- PGPR is the key: healthy plants with vigorous roots in PAH, PHC, salt and metal contam. soils
- PGPR alleviate stress and promote growth: Low ethylene and high auxin
- 5 years of fields tests successful: PEPS removed 20 % to 40 % of recalcitrant PHCs per year
- PHC metabolized and/or degraded
- 50 to 100 % increases in plant growth on salt impacted sites
- Salt impacted sites can be remediated in about 5 years
- Great promise for restoration of oil and salt impacted sites as well as brownfields

Colleagues and partners

- The people that do all the work
 - 😨 Karen Gerhardt
 - 😨 Jola Gurska
 - 💮 Xiao-Ming Yu
 - 😨 Pearl Chang
 - 💮 Wenxi Wang
 - 💮 Haitang Wang
 - 💮 Mark Lampi
 - David Isherwood
 - 💮 Shan Shan Wu
 - 👧 Julie Nykamp
 - Micole Knezevich
 - 💮 Greg MacNeill
 - 💮 Xiaobo Lu
 - 💮 Han Zheng

- Collaborators
- Xiao-Dong Huang, Bernie Glick, UW
- Perry Gerwing, Earthmaster
- Partners
- L Lawlor, Imperial Oil
- **D Stokes, Talisman Energy**
- **K Cresine, Taqa North**
- T Knapik, PennWest
- G Millard, Shell
- R Maurice, Wardrop
- K Cryer, G Pullishy, B Strilchuk, S Brown, C Chattaway, Earthmaster
- J Budziak, Seaway
- N Reid, EBA
- **G Stephenson, Stantec**
- **B Satre, Strata**
- **C Baranec, Northwind**
- **D** Tober, Matrix
- M Lansing, TerraLogix