

The Use of DNA Technologies in Determining the Biotreatability of Chlorinated Aliphatic Hydrocarbons

Annemarie L. Douglas, Ph.D. R&D Coordinator HydroQual Laboratories Ltd.

HydroQual Laboratories Ltd

- Wholly-owned subsidiary of Golder Associates Ltd.
- HydroQual uses biological testing for measuring the effect of toxicants and their impact on various links in the food chain
- Aims at evaluating and/or improving environmental health
- Expertise in various fields of the natural sciences (microbiology, biochemistry, toxicology, ecology, botany and zoology).
- ISO 17025:2005 (CAEAL), EPA, AIHA

Biotreatability Studies

Bench scale testing

provide key information with small amount of material (lower cost, etc)

Various types of contaminants

- Hydrocarbons, VOCs, and other organics
- Metals
- Test multiple treatments, determine dosage, additional amendments
- Strategy may vary based on
 - Bench test results
 - Legislation

TCE and PCE

- Were commonly used in industrial processes including dry cleaning
- Heavier than water DNAPL
- Recalcitrant for remediation

TCE/PCE Remediation Strategies

- Chemical oxidation permanganate
- Aerobic bioremediation adding oxygenproducing chemicals
- > Abiotic remediation nZVI, ferrous iron
- Anaerobic biostimulation and augmentation - reducing ORP and increasing hydrogen, methane
 - all methods benefit from greater quantities of contaminant in the aqueous phase.
 - use of surfactants, dispersants, chelators, emulsifiers.

Biostimulation

- Addition of nutrients that will reduce redox potential and oxygen.
- Bacteria involved require hydrogen, methane, acetate, or formate as electron donors
 - can be provided directly or indirectly
 - carbon compounds that are food for methanogens that produce the above as waste products.
- Bioaugmentation = adding bacteria
 Illegal in Canada

Anaerobic dehalorespiration

Pathway for degradation of TCE to ethylene.

Bacteria

- Dehalobacter restrictus
- Desulfitobacterium metallireducens
- Dehalospirillium spp.
- Desulfuromonas chloroethenica
- Desulfobacterium spp.
- Clostridium bifermentans
- Dehalococcoides ethanogenes (Dhc)
- Most stop at DCE, only Dhc can degrade TCE to ethylene.

Detection Methods

- Culture in the lab
 - ➢ Slow 3 weeks or more
 - Many are unculturable

Analytical detection of daughter products

Indirect

DNA analysis

- > Fast
- Complete
- More sensitive
- > Direct

All living things have DNA

DNA encodes for all cellular processes

- Proteins and enzymes
- Cellular machinery
- Cellular structure

DNA isolation

Break open the bacteria

Specifically isolate DNA from everything else

PCR

What's needed

- Thermophilic enzyme = Taq
- DNA bases AGCT
- Primers DNA targets

Detection Methods

- Can detect Dhc specifically
- Detect other known bacteria

DNA profiling and sequencing

- Bacterial diversity and monitoring
- Sequence members of the population for ID

Biotreatability Case Studies

- Strictly anaerobic
- Sites had been pretreated with nZVI
- Groundwater and soil provided
- Dhc was present in initial samples

Case 1

Test Design Matrix for Anaerobic Benzene Bio-degradation								
Reactor			Treatm	nent (+	-, varia	ble inc	luded	; -, variable not included)
		Chlorinated Hydrocarbon	Nano-scale Zero- Valent Iron	Sodium Azide	Nitrate	Sulfate	Soy Protein	Treatment/Target Populations
								<u>D12</u>
1	D12	-	-	-	-	-	-	control
2	D12	-	+	-	-	-	-	control + nZVI
3	D12	-	-	-	-	-	+	control + soy powder
								NZV14
4	NZVI4	-	-	-	-	-	-	control
5	NZVI4	+	-	-	-	-	-	control + spike
6	NZVI4	-	+	-	-	-	-	nZVI
7	NZVI4	+	+	-	-	-	-	nZVI + spike
8	NZVI4	-	-	+	-	-	-	abiotic control
9	NZVI4	+	-	+	-	-	-	abiotic control + spike
10	NZVI4	-	+	+	-	-	-	abiotic nZVI control
11	NZVI4	+	+	+	-	-	-	abiotic nZVI control + spike
12	NZVI4	-	-	-	+	-	-	Geobacter + Dechloromonas
13	NZVI4	-	+	-	+	-	-	Geobacter + Dechloromonas + nZVI
14	NZVI4	-	-	-	-	+	-	Geobacter + Desulfobacterium
15	NZVI4	-	+	-	-	+	-	Geobacter + Desulfobacterium + nZV
16	NZVI4	-	-	-	-	-	+	soy protein
17	NZVI4	-	+	-	-	-	+	soy protein +nZVI
18	NZVI4	-	-	-	+	-	+	soy protein + nitrate
19	NZVI4	-	+	-	+	-	+	soy protein + nitrate + nZVI
20	NZVI4	-	-	-	-	+	+	soy protein + sulfate
21	NZVI4	-	+	-	-	+	+	soy protein + sulfate + nZVI

Anaerobic set up

 \triangleright

- > 350 to 400 mL of GW
- Analysis at 2 weeks, 1 and 2 months
- Chemical, population, and bacterial ID by PCR

Case 1

- After 2 months, we detected differences in the bacterial populations with the addition of nZVI, soy and nitrate.
- Comparing analytical, population, and ID data, we recommended nitrate rather than sulfate as an amendment.

- 10 grams of soil plus 100 mL of GW
- Hydrogen was added as a gas and dissolved into GW
- Incubated for 1, 2 weeks, 1 and 2 months

- 1 month analysis
- Chemical, population and Dhc PCR were analyzed.
- Most of the degradation was found to be abiotic from the residual nZVI.

Future Directions

Total microbial profiling of environments

- Classes of bacteria
- Archaea
- Fungi and Moulds
- > Algae
- Provides a complete picture of microbial populations, which might need to act as a consortium to produce the desired effect

Specific Detection by PCR

- Hydrocarbon-degrading bacteria
- BTEX-degrading bacteria
- PAH-degrading bacteria

Other Uses of PCR

> Biocorrosion Analysis

- Acid-producing bacteria
- Sulfate-reducing bacteria

Summary

- Come talk to us!
- Come talk to us!
- Come talk to us!

Questions?

- Contact information
 - > Annemarie Douglas
 - > (403) 253-7121
 - > Annemarie_Douglas@golder.com

