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Applied Tracers

Definition:

Unigue constituent intentionally introduced to aquifer

Why Powerful:

Source term is controlled and well characterized

*~10 AD: Flavius Josephus: chaff tracer identifies source of Jordan R.

e Late 1800s: Quantitative tracer tests using fluorescent dyes, salt, and
bacteria in karst aquifers

®1945-1955: Advances in chemical measurement increased power and
made high-frequency sampling economically feasible

¢ 1965-1970: 650 papers
1995-2000: 6500+ papers
e Now routinely used in “non-research” applications

— ARCADIS uses tracers to support design of all in situ systems,—
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Aquifers are Heterogeneous and Anlsotroplc as a Rule!

Hicarao Group, Hedrock Lanyon state Fark]

2 m thick
cle

Geology controls distribution and transport of |njected qunds and squtes
* The success of in situ remediation systems requires site specific understanding and tailored design
* Tracer tests can effectively provide this critical information

“We need to stamp out homogeneous isotropism from our thinking!”



Groundwater Always Takes The Path of Least Cumulative Resistance
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Classic Fate and Transport Model (i.e., the ADE)

source plane

bounding envelope

However, what we observe...

 Peak transport velocity is much faster than average velocity
e Significant “tailing” is observed

 Transverse dispersive spreading is negligible

 Delivery and transport is highly variable between sites
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A Better Conceptualization of Solute Transport
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The porous media is represented by two domains in close proximity — one
mobile, one immobile — and solute mass is exchanged via diffusion ﬁ
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Back Diffusion

Figure 1.1: Setup - Sand and Clay Figure 1.2: Fluorescein Inflow (Matrix Storage)

Figure 1.3: Source Off — Back Diffusion Figure 1.4: Close-up of Back Diffusion



How Does This Relate to In Situ Remediation?

« Coverage-volume relationship

— What controls the lateral coverage we can accomplish from an
injection well?

— Does lateral (transverse) coverage increase downgradient from
injection points?
« Reagent mass velocity
— The peak and center of mass don't a
— The center of mass travels slower than the groundwater velocity
« Reagent concentration

— Dilution occurs as a result of diffusive migration into immobile
pore space

— Peak concentration occurs only in the most mobile pore spaces;
concentrations in immobile pore spaces will be noticeably lower

— The peak concentration decreases as a function of distance from
the injection well
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Success with in-situ technologies begins and ends with hydrogeology
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ldealized Conceptual Well Network
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Injection Phase — Calculating Mobile Porosity

e Inject whatever volume is needed to
reach a planned radius

e Use a qualitative tracer to get real-
time arrival

— Conductivity (or “inverse
conductivity)

— Visual dye

e Use a quantitative tracer (typically
fluorescent tracer) with low S/N ratio
for porosity and transport
characterization
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Example: Calculating Mobile Porosity
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Example: Inverse Modeling of Drift Phase

Peak Velocity: 5-10 ft/day
Average Velocity: 1-2 ft/day
Mobile Porosity: 2-4%
Immobile Porosity: 25%

Mass Transfer: 0.05 per day

¢ Obsered
Mobile
,,,,,,,,,, Immobile
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Key Information Relevant to Design

e High hydraulic conductivity

— Aquifer has high injectability
e Low mobile porosity

— Facilitates efficient amendment distribution
e |[mmobile porosity and mass-transfer

— Diffusion-controlled tailing for conservative solutes will control
period of performance

e May need to consider recirculation strategies for full-scale
implementation
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Normalized Tracer

TOC (mg/L)

Concentration
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Quantifying Lactate Half-Life Over Time
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4D Mapping with Geophysics
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System Operation and Performance Assessment
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Recirculation System for Performance for Ammonia Treatment
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Ethanol Recirculation System for Cr (VI) Treatment
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Push-Pull Test for Cr(VI) Sorption
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Capture Zone Confirmation
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Future Directions

e Improved in-situ and “real-time” monitoring capabilities
e Development of practical test design tools
e Measure LNAPL mobility

Closing Thoughts

“There’s no truth like tracer truth.” James Quinlan

Tracers are the best tools for understanding how injected fluids and

contaminants behave at the remediation (i.e., local ) scale
click to LOOK |N3EDE|
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