RemTech Symposium 2007

Innovative Coupled Chem-Bio Treatability Study Leading to Large Scale Pilot Test at a Wood Treating Facility

James Studer¹, Michael Lee, Ph.D.², Jack Sheldon³, and Norm Kennel⁴

¹ ChemRem International, LLC, Albuquerque, NM USA;
 ² Terra Systems, Inc., Wilmington, DE USA;
 ³ AMEC Earth & Environment, West Des Moines, IA USA;
 ⁴ Premier Environmental Services, Inc. Collierville, TN USA

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Presentation Outline

- Project Objectives Active Wood Treating Facility
- Project Background
- "Assisted" Natural Attenuation Remedy
- Coupled Chemical Oxidation and Aerobic Biodegradation
- Treatability Study Design
- Study Analytical Results
- Pilot Test Design, Implementation, and Preliminary Results
- Conclusions

Project Objectives

- Achieve regulatory "go-head" for initiating a Monitored Natural Attenuation (MNA) remedy leading to closure.
- Address the regulatory concern that focused "hot spots" along the plume centerline represent threats to MNA success.
- Bench and field pilot test a PCP/naphthalene plume attenuation strategy involving tactical integration of insitu chemical oxidation (Chem) and enhanced aerobic biodegradation (Bio) technologies.
- Satisfy "hot spot" concern via pilot test, or if necessary, limited additional treatment based on pilot test results.

Project Location

Central Mississippi

Site Plan with Potentiometric Surface

North-South Hydrogeologic Profile

Groundwater Characterization

- Persistent PCP and naphthalene concentrations (mg/l) in WC-5, WC-23, and WC-40 areas. Product droplets observed in WC-5 area.
- Acidic pH in range of 4.0 5.0.
- Low dissolved oxygen with utilization of various electron acceptors across the site.
- Active biological population.

"Assisted MNA" Concept

- Regulators approve of MNA remedy with exception
- Concerned about three hot spots
- Requested that limited effort go into mass reduction at these three areas
- In situ approach involving aggressive treatment and compatibility with MNA remedy desirable

NA Demonstration -Plume Centroid Position

Coupled ISCO-BIO Concept

• In-situ approach involving chemical oxidation technology capable of degrading PCP and Naphthalene and other detected organic contaminants.

• The chem-ox technology is compatible with planned MNA. Microbial community should not be severely impacted. No by-products toxic to desirable micro-organisms. Even better if chem-ox technology supports enhanced aerobic biodegradation.

• Oxygen and sulfate addition as result of the chem-ox action desirable. Increase in dissolved organic carbon and nutrients as result of chem-ox action desirable.

• Provide a consistent amount of additional oxygen (and other AEA) over an extended period of time to support microbial rebound from chem-ox action and to support growth cycle and ultimately a high level of contaminant degradation.

• Klozur ® OBC chosen for chem-ox; PermeOx® Plus chosen to assist in persulfate activation and to provide the stable long-term oxygen source.

• Conduct treatability study to show efficacy and efficiency and as appropriate pilot test to demonstrate at field scale.

Coupled ISCO-BIO Concept

Persulfate Activation Zone

Molecular fragments (DOC), DO, Sulfate

Groundwater Flow

High pH and DO Zone

Performance Assessment Well

Contaminant Plume

PermeOx[®] Plus

- Timed Oxygen Release Product consisting of Engineered Calcium Peroxide manufactured by FMC Corporation.
- Selected from several alternative products.
- $CaO_2 + 2H_2O \rightarrow Ca(OH)_2 + H_2O_2$
- $2H_2O_2 \rightarrow O_2 + 2H_2O$

Klozur[®] OBC

- First combined chemical oxidation and enhanced aerobic biodegradation product manufactured by FMC Corporation.
- Based on alkaline activation of Klozur ® sodium persulfate using PermeOx Plus ®, which imparts alkalinity.

Klozur[®] OBC

 Klozur activation by iron, hydrogen peroxide, heat and other alkaline agents were options. Use of PermeOx Plus offers the longest oxygen release profile along with alkaline activation.

S₂O₈⁻² + 2H⁺ +2e⁻ → 2HSO₄⁻
 S₂O₈⁻² + activator → SO₄^{•-} + (SO₄^{•-} or SO₄⁻²)

Treatability Study Design

- Initial soil & water sample characterization
- Determine chemical oxidant efficiency
- Evaluate aerobic biodegradation
 - Straight soil and groundwater
 - 10x diluted soil and groundwater to simulate less contaminated area or aerobic bioremediation polishing after ISCO

Initial Characterization

Soil	Units	Results	Ground	lwater
TOC	mg/kg	3400		
COD	mg/kg	448	mg/L	46
рН	20 g soil 100 mL DI	3.8		4.3
ORP	mV	-38	mv	24
Acidity	mL 1 N NaOH/20 g soil	1.45		
NaOH Demand	g NaOH/kg soil	2.9		
Conductivity	uS/cm		lia	219

Initial Characterization

Soil	Units	Results	Qual.	Groundwater		Qual.
2,4-Dimethylphenol	ug/kg	360	J	ug/L	<500	U
2,4,6-Trichlorophenol	ug/kg	<11000	U	ug/L	60	J
Pentachlorophenol	ug/kg	1500	J	ug/L	4900	
Naphthalene	ug/kg	120000		ug/L	<500	U
Acenaphthylene	ug/kg	1000	J	ug/L	<500	U
Acenaphthene	ug/kg	62000		ug/L	<500	U
Fluorene	ug/kg	46000		ug/L	<500	U
Phenanthrene	ug/kg	130000		ug/L	<500	U
Anthracene	ug/kg	13000		ug/L	<500	U
Fluoranthene	ug/kg	60000		ug/L	<500	U
Pyrene	ug/kg	37000		ug/L	<500	U
Benzo(a)anthracene	ug/kg	8600		ug/L	<50	U
Chrysene	ug/kg	7500	J	ug/L	<500	U
Benzo(b)fluoranthene	ug/kg	2100		ug/L	<50	U
Benzo(k)fluoranthene	ug/kg	2400		ug/L	<50	U
Benzo(a)pyrene	ug/kg	2100		ug/L	<50	U
Benzo(g,h,i)perylene	ug/kg	430	J	ug/L	<500	U

Klozur® OBC Study Results

Soil					% Rem.		
Day	Units	0	29	64	Days 0- 64		
Total SVOCs	ug/kg	598290	458970	378400	36.8		
Groundwater							% Rem.
	Units	0	1	8	29	64	Days 0- 64
Total SVOCs	ug/L	14011	19003	8348	9756	9317	33.5
OBC by Titration	mg/L	7985	4649	3257	3257	1865	76.6
рН		11.0	10.4	8.5	7.3	8.8*	- E
ORP	mV	257	70	163	182	124	
DO	mg/L	8.6	8.3	9.5	9.4	7.4	
	*ado	led 192 mg	NaOH on D				

Bioremediation Results with PermeOx ® Plus

Bio Straight Soil and Groundwater							% Rem.
Solids	Day	0	29	56	84	93	Days 0-93
Sum BNA	μ g/kg	854640		722990		251520	70.6
Groundwater							
Sum BNA	μ g/L	13515		7173		3865	71.4
% App. Active Oxygen	%		0.483	0.424	0.4698	0.3435	
%Active Oxygen	%		0.652	0.589	0.665	0.476	
%PermeOx Plus	%		2.94	2.68	2.99	2.15	
рН			11.2	12.3	11.2	11.6	
ORP	mV		-91	-80	-104	-14	
Dis. Oxygen	mg/L		9.6	9.3	8.4	11.4	

Bioremediation Results with PermeOx ® Plus

Diluted Soil and Groundwater							% Rem.
Solids	Day	0	29	56	84	93	93
Sum BNA	μ g/kg	130120		68872		28406	78.2
Diluted Groundwater							
Sum BNA	μ g/L	8372		4786		1429	82.9
% App. Active Oxygen	%		0.019	0.012	0.0080	0.0068	
%Active Oxygen	%		0.023	0.014	0.0090	0.0081	
%PermeOx Plus	%		0.10	0.064	0.043	0.036	
рН			10.2	10.6	9.0	9.8	
ORP	mV		-60	-78	-30	46	
Dis. Oxygen	mg/L		9.3	9.0	6.4	7.0	

Advanced Molecular Biological Analyses

 Phospholipid Fatty Acids (PLFA) are essentially the "skin" of the microbe and provide an effective tool for monitoring microbial responses to their environment. PLFA analysis provides a broad understanding of the entire microbial community with information obtained in the following key areas:

> Viable Biomass Community Structure Metabolic Activity

PLFA Analysis Results – Straight Soil and Groundwater

Day	Biomass	Firmi- cutes	Proteo- bacteria	Anaerobic Metal Reducers	SRB/Actino -mycetes	General	Eukar- oytes	Slowed Growth	Decreased Permeability
	cells/g	% Total PFLA	% Total PFLA	% Total PFLA	% Total PFLA	% Total PFLA	% Total PFLA	% Total PFLA	% Total PFLA
0	2.08E+07	26.16	47.96	7.42	4.62	10.22	3.62	0.88	0
56	2.19E+06	0	14.9	0	0	85.1	0	0	0
93	6.65E+06	0	63.11	0	0	36.89	0	0	0

PLFA Analysis Results – Diluted Soil and Groundwater

Day	Bio- mass	Firmi- cutes	Proteo- bacteria	Anaerobic Metal Reducers	SRB Actino- mycetes	General	Eukar- oytes	Slowed Growth	Decreased Permeability
	cells/g	% Total PFLA	% Total PFLA	% Total PFLA	% Total PFLA	% Total PFLA	% Total PFLA	% Total PFLA	% Total PFLA
0	1.85E+07	33.98	39.36	8.94	4.4	10.44	2.9	0.48	0
56	3.63E+06	9.17	21.64	0	0	65.74	0	1.94	0
93	2.98E+07	0	90.85	0	0	9.15	1	0	0

Study Conclusions Klozur ® OBC

- Total Oxidant Demand for Klozur® OBC is about 41 pounds per cubic yard
- Additional sodium hydroxide (or equivalent) needed
- Klozur® OBC persisted for > two months
- Over 37% of SVOCs in soil and 34% in groundwater removed in 64 days

Study Conclusions PermeOx ® Plus

- PermeOx
 Plus promoted biodegradation of 70% SVOCs in highly contaminated soil and 71% in groundwater over 3 months
- With diluted soil and groundwater, PermeOx Plus removed 76% SVOCs in soil and 83% in groundwater over 3 months – suggests potential for treatment of highly contaminated soil with Klozur ®OBC followed by aerobic bio polishing

Injection Pattern: WC-5, WC-23, and WC-40 Areas

Injection Process

- Target: 6900 PoxP/8400 OBC
- Actual in WC-5: 5200 PoxP/1786 OBC

- Target: 6900 PoxP/8400 OBC
- Actual in WC-23: 5032 PoxP/8400 OBC

- Target: 1300 PoxP
- Actual in WC-40: 1522 PoxP

Preliminary Observations

- Connection with injectate noted in WC-5 and WC-23. Products could be direct pushed into subsurface. Difficult to inject into wells.
- Concentrations of PCP and naphthalene rise due to desorption in WC-5 and WC-23 areas, then decline. Little change in WC-40 area.
- pH increased to >11 and remains in WC-5. Similar increase in WC-23, but beginning to fall. Slight increase in pH for WC-40 area.
- Droplets in WC-5 have disappeared.

Next Steps

- Add remaining Klozur
 ® OBC and PermeOx
 ® Plus based on new injection scheme.
- Continue monitoring program.
- Define endpoint for the pilot test.
- Determine if additional injection is warranted.