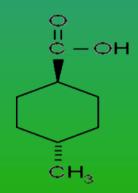

Enhanced Degradation of a Model Naphthenic Acid Compound in Bioreactors


> Janice Paslawski, P.Eng. University of Saskatchewan (Dr. C. Hill and Dr. M. Nemati) National Water Research Institute (Dr. John Headley)

> > October 25, 2007

Outline

- Brief Overview of Oilsands
- Review of NAs and Background
- Objectives of this Study
- Materials and Methods
- Results
- Discussion and Direction



Background

1995 Goal: 1 million barrels/day by 2020
Between 1995 and 2004, production rates increased to 1.1 million barrels/day
Current rates projected to 2015: 2.7 million barrels/day
By 2030: 5 million barrels/day

"Given these projections, the question of how to manage the associated environmental impacts becomes even more urgent.

The magnitude of the risks and opportunities is unprecedented in the history of Canadian energy production."

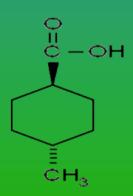
- Pembina Report August 23, 2006

Clean-up approach still deemed a "mess" – Edmonton Journal

Photo by the Edmonton Journal, July 28, 2006

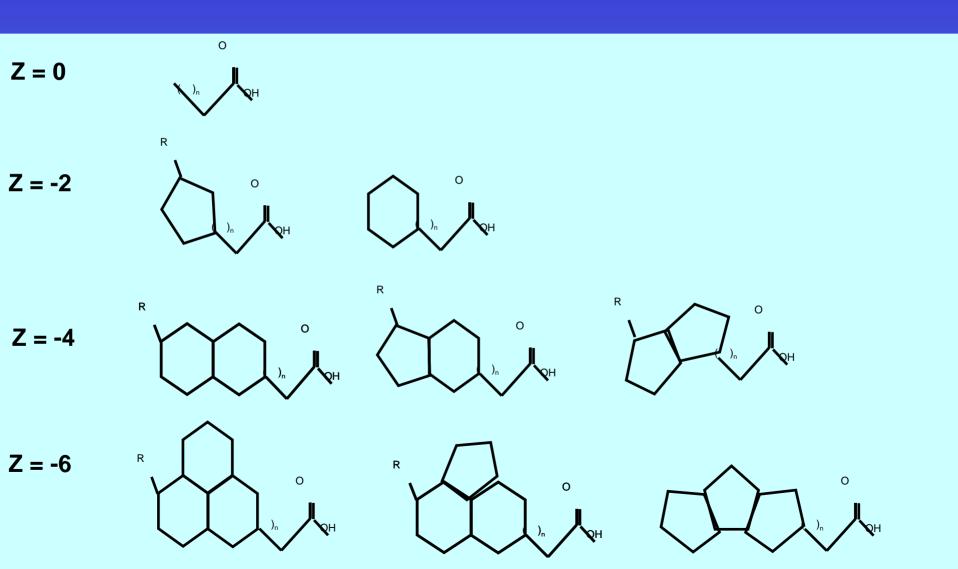
Background (cont'd)

- Naphthenic acids natural organic compounds
- Corrosive to refinery processes
- Caustic soda extraction method for extraction of naphthenic acids



Background (cont'd)

Naphthenic acids are toxic to aquatic algae and other micro organisms
NAs are acutely toxic to aquatic organisms
NAs have shown cellular respiratory inhibition in mammalian evaluations (Headley *et. al*, 2002)



Naphthenic Acids: Review

- Natural components found in most petroleum sources including the Athabasca oil sands
- Released from the oil sands during aqueous extraction at elevated pH
- General chemical formula: $C_n H_{2n+z} O_2$
- n indicates the carbon number
- *z* indicates hydrogen deficiency number

Structure of NAs

Naphthenic Acids (cont'd)

- Eventual biodegradation of petroleum leads to the formation of naphthenic acids
- Industrial uses: manufacture of tires and paints
- Used as lubricants, fuel additives and corrosion inhibitors
- Naphthates have been used as ground contact wood preservatives

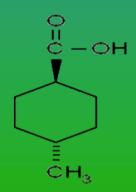
Biryukova et al. 2007

Naphthenic Acids (cont'd)

- Oil Sand is 10 12% Bitumen (Clemente et. al. 2005)
- Average naphthenic acid concentration 200 mg/kg ore (Syncrude)
- Syncrude processes approx. 500 000 tonnes of ore/day
- 100 tonnes of naphthenic acid from ore each day!

What do we know?

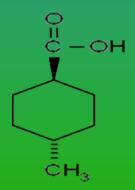
- We can achieve microbial growth in both commercial NAs and tailings pond water
- Microbial growth varies within the range of NA molecular structures
- There has been no separation and identification of individual NA compounds (Scott *et al.*, 2005)


What do we know?

- Some success with biodegradation of standard NAs
- Biodegradation of tailings NAs is considerably slower (Scott *et al.*, 2005)
- Low molecular mass NAs (<C₁₈) are more readily biodegraded than high molecular mass NAs (Scott *et al.*, 2005)
- Toxicity is dominant in lower molecular weight NAs (<C₂₂) (MacKinnon, 2001)

What we need to do?

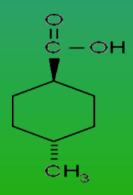
 Understand and quantify the growth kinetics of biodegradation for individual compounds as a basis for evaluating and engineering enhanced biodegradation systems



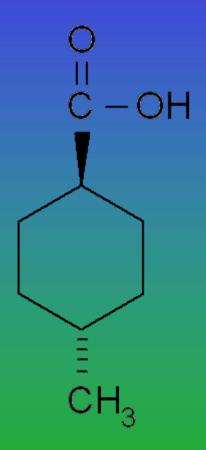
Objectives

- To develop a microbial consortium capable of biodegrading a NA model compound
- To experimentally determine the biokinetic parameters associated with biodegradation of the model compound
- To study the biodegradation of a model NA in bioreactors with freely suspended cells

Selection of a Model Compound


Trans 4-methyl-1-cyclohexane carboxylic acid

 $CH_3C_6H_{10}CO_2H$


Molecular Weight 142.20

CAS Number 13064-83-0

Trans 4-methyl-1-cyclohexane carboxylic acid

 $CH_3C_6H_{10}CO_2H$

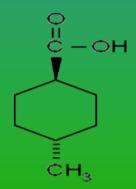
Molecular Weight 142.20

CAS Number <u>13064-83-0</u>

- Sigma-Aldrich

Why 4MCHCA trans?

- Readily soluble similar to NAs in tailings water
- Trans isomers seem to be more consistently degradable (Tanapat, 2002)
- n=8 (C₈) outside the range of strong sorption to soils (Janfada, 2006)
- Within the range of NA compounds that are more toxic to fish (<C₂₂)
- Timely and direct quantitative analyses


Materials and Methods

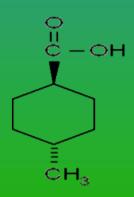
- A timely and reliable analytical method
- A consortium capable of degrading the model compound
- A consistent means of measuring the microbial concentration
- Bioreactors
- Toxicity reduction evaluation

Materials and Methods

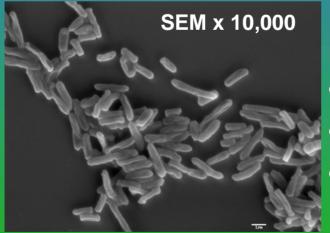
- A timely and reliable analytical method
- A consortium capable of degrading the model compound

Development of a Microbial Consortium

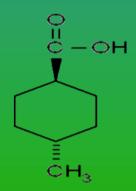
- Pseudomonas putida (ATCC 17484)
- Culture developed using tailings pond water
- Culture developed using commercial NAs


Microbial Identification


Variovorax paradoxus (Alcaligenes paradoxus)


Pseudomonas putida

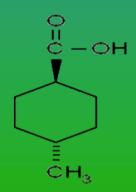
Mixed Culture


Psuedomonas http://www-micro.msb.le.ac.uk

- Gram-negative
 - Rod shaped
 - Approximately 1 to 3 microns in length

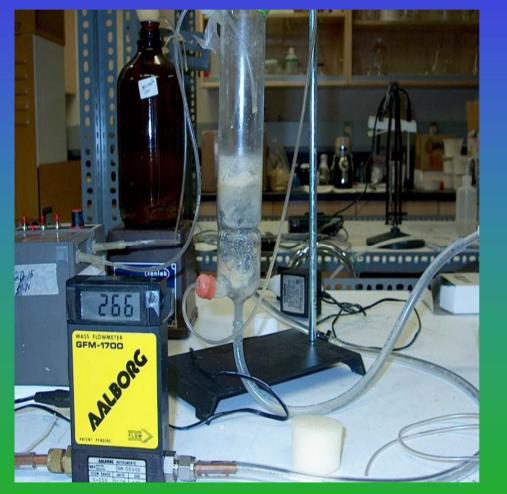
Materials and Methods

- A timely and reliable analytical method
- A consortium capable of degrading the model compound
- A consistent means of measuring the microbial concentration



Measurement of Biological Growth

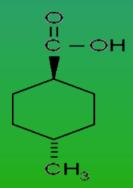
- Spectrophotometer (optical density)
 Most probable number (MPN)
- Plate counts


Materials and Methods

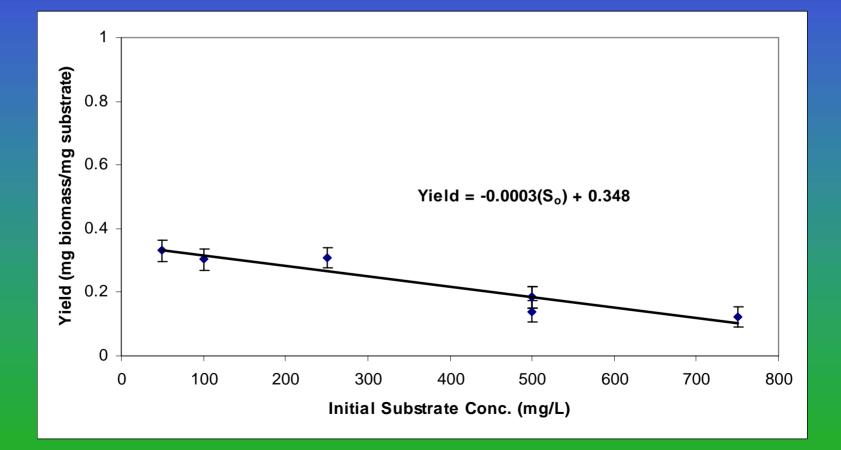
- A timely and reliable analytical method
- A consortium capable of degrading the model compound
- A consistent means of measuring the microbial concentration
- Bioreactors (batch; continuous; immobilized cell)

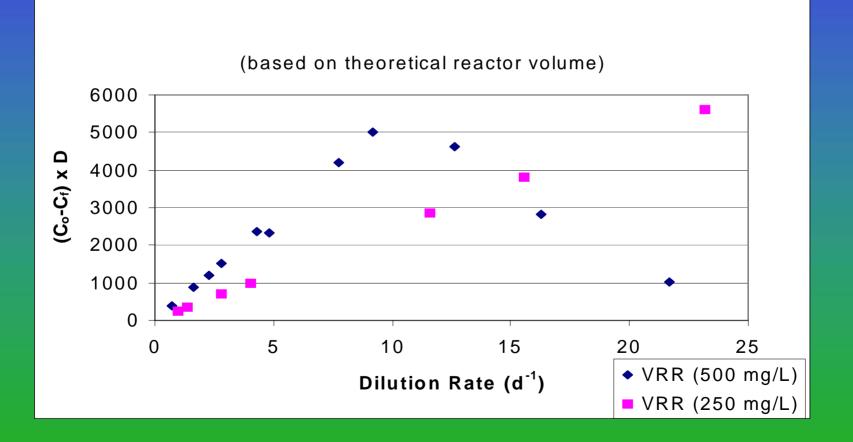
Continuous Stirred Tank Reactor

Immobilized Cell System



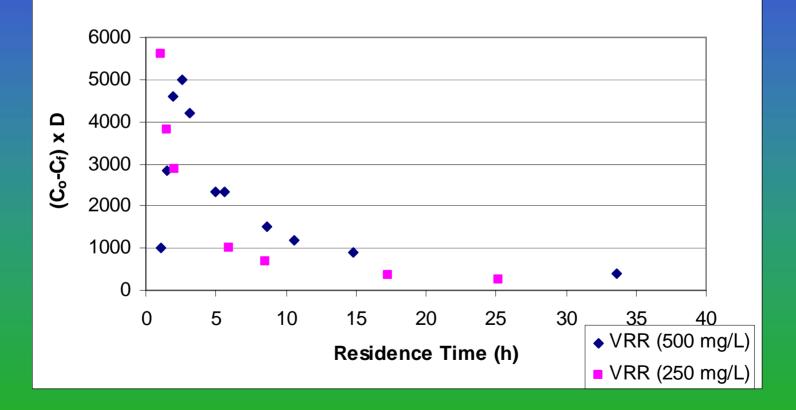
Results




Quantifying Growth and Biodegradation Kinetics

- Microbial growth
- Specific growth rate
- Substrate utilization
- Removal rate of model NA
- Yield

Yield v. Initial Substrate Concentration



Volumetric Reaction Rate Immobilized Cell System

Immobilized Cell Reactor (Residence Times)

(based on theoretical reactor volume)

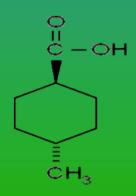
Summary

- Yield for microbial degradation was 0.3 mg biomass/mg substrate
- The growth of this consortium on the model NA compound is up to 5 times slower than that of other environmental contaminants
- The maximum degradation rate occurred in the immobilized cell system

Discussion

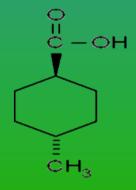
- The observed degradation rates increased significantly from batch systems to a continuously stirred tank reactor and an immobilized cell system
- The most efficient residence time decreased from 40 to 2.4 hours between the CSTR and the immobilized cell system (17 times more efficient)

Future Direction


- Continued evaluation of biokinetics in an immobilized cell system (biofilms in an immobilized cell system)
- Evaluation of the substrate capacity of the immobilized cell system
- Evaluation of the biokinetics of an immobilized cell system and continuous reactor in varying environmental conditions

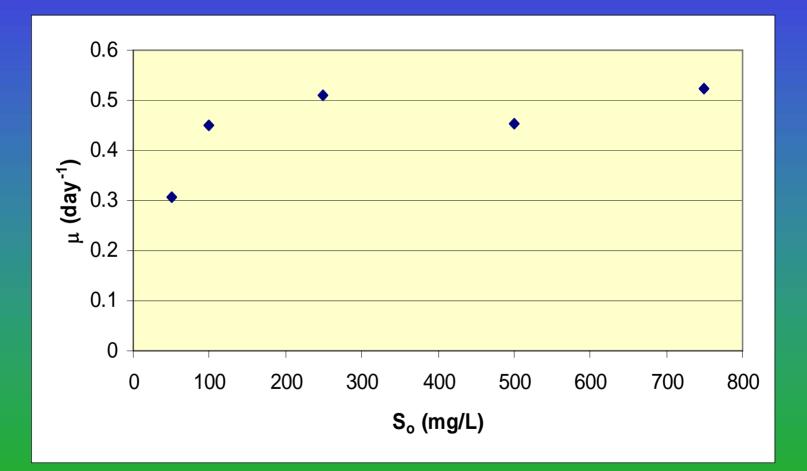
Acknowledgements

- University of Saskatchewan
- National Water Research Institute
- Natural Science and Engineering Research Council of Canada
- Canadian Council of Professional Engineers

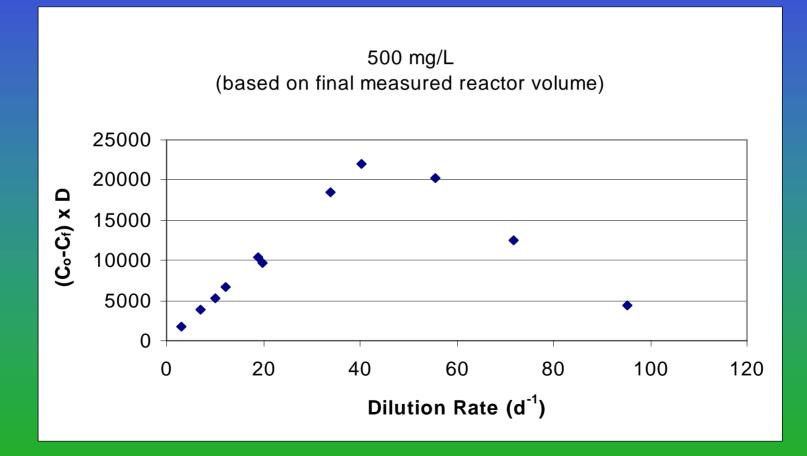


Acknowledgements

Dr. Hill and Dr. Nemati, Chemical Engineering, U of S
Dr. Headley, NWRI


ent Envirennem Canada

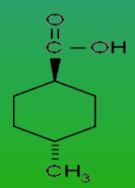
Comments and Questions?


STUERSE

te >

Specific Growth Rate v. S_o

Volumetric Reaction Rate Immobilized Cell System


Materials and Methods

- A timely and reliable analytical method
- A consortium capable of degrading the model compound
- A consistent means of measuring the microbial concentration
- Bioreactors (batch; continuous; immobilized cell)
- Toxicity reduction evaluation

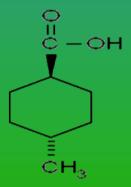
Toxicity Reduction Evaluation

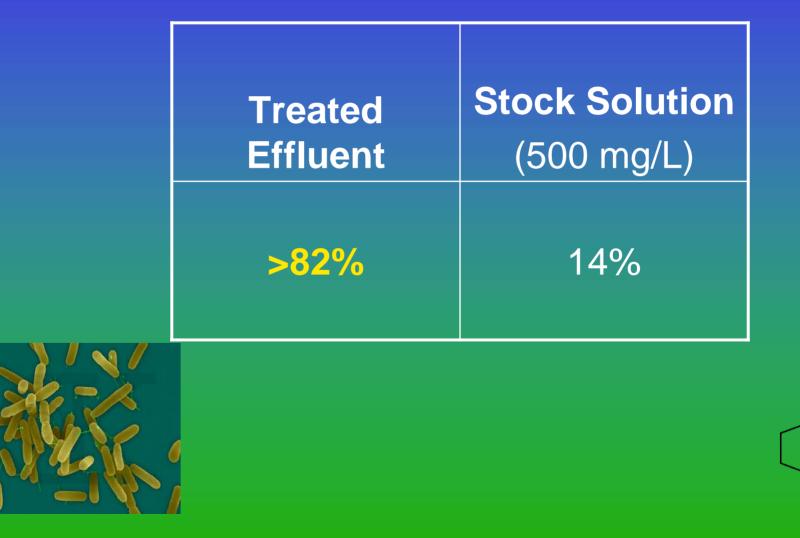
Acceptable toxicity bioassays


 EUB Guide 50: Microtox^R EC50; Daphnia magna (LC50; EC50)
 Artemia salina toxicity test

Toxicity Reduction Evaluation Results

- Daphnia magna (LC50)
- Microtox^R (EC50)
- Artemia salina toxicity reduction test




Daphnia magna 48 hour Acute Toxicity Test (LC50)

Treated	Stock Solution
Effluent	(500 mg/L)
79.5%	35.4%

Microtox^R Toxicity Test (EC50)

 $\stackrel{\rm O}{\parallel}$

 CH_{2}

OH