RISK MANAGEMENT OF A FORMER ROAD SALT STORAGE YARD

Robert S. Nichols Trent Parks October 26, 2007

INTRODUCTION

- This presentation will review the environmental investigation work that has been done, the results and the risk management plan that has been implemented.
- Site operated by The City of Calgary on land owned by Alberta Transportation.

3

200

100

0

Maintenance Shed

Salt Tent

Pickled Sand

Storage

Office

Calcium Treated Sand

200 m

Gravel Dugout

Intermittent Pond

Permanent Pond

ENVIRONMENTAL INVESTIGATIONS

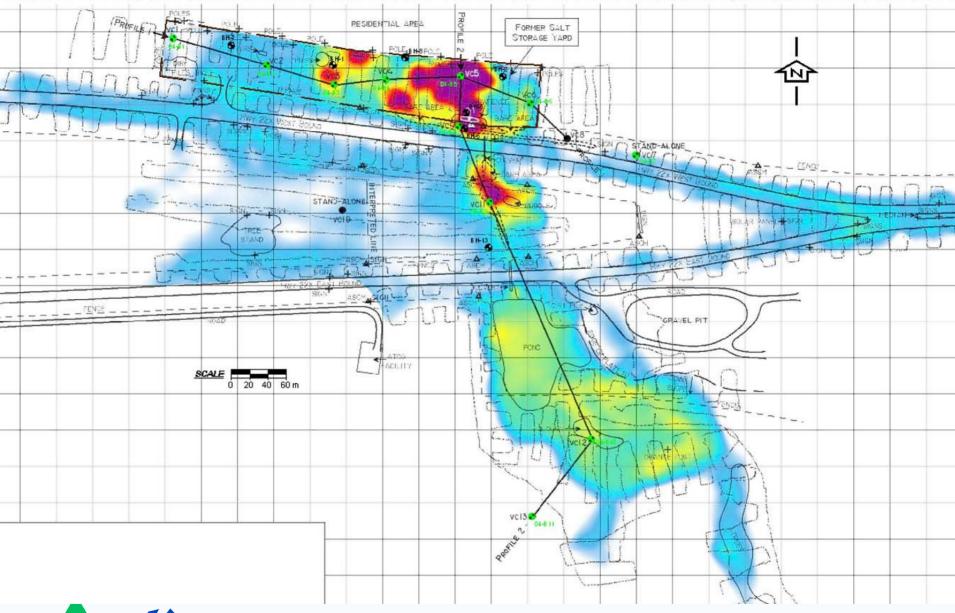
- Environmental Site Assessment, 2001
- Phase II ESA, 2002
- Supplemental Investigation, 2004
- Off-site Investigations, 2004 & 2005
- Risk Management Options, 2005
- Risk Management Plan, 2005
- Detailed Design, 2006
- Installation of Clay Cover, 2006/2007

INVESTIGATION RESULTS

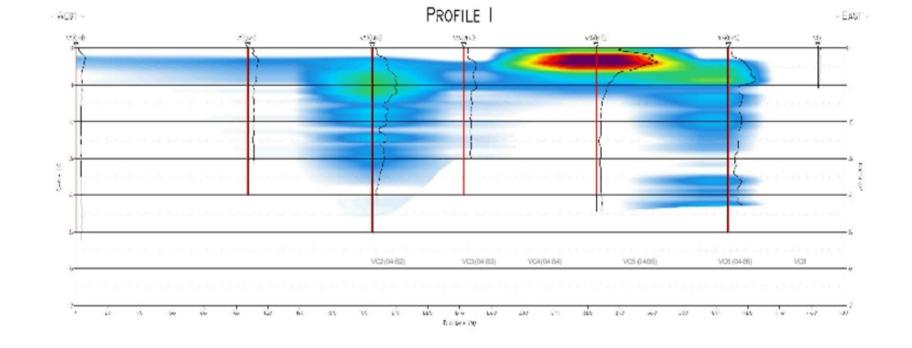
<u>Scope:</u> horizontal EM and 13 vertical EM traces, installing 34 monitoring wells (16 onsite, 18 offsite), soil, groundwater and surface water sampling.

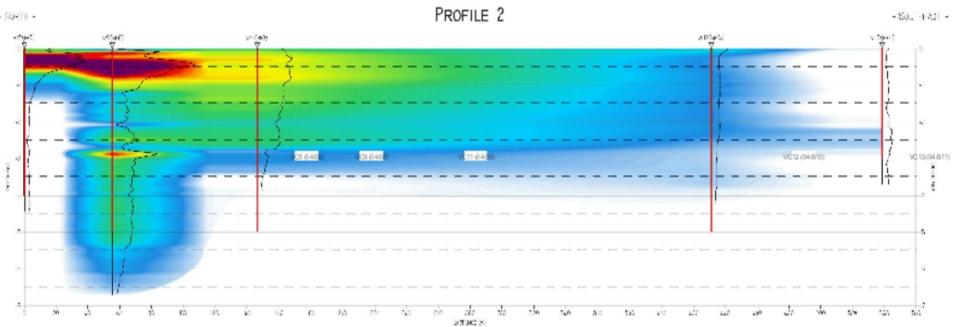
<u>Results</u>

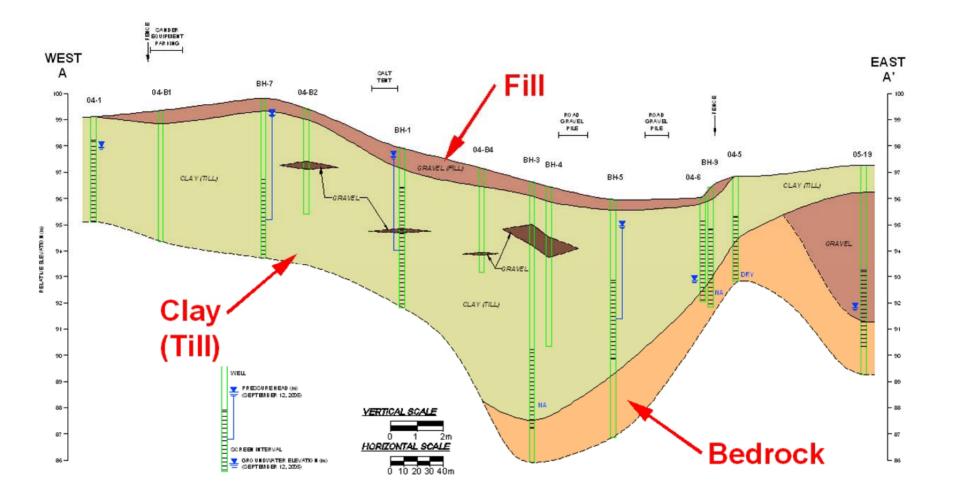
- silty clay with discontinuous sand/gravel lenses. Bedrock within 2.5 m of surface at east end.
- groundwater at 0.2 3.8 m bgs; k = 10^{-10} to 10^{-8} m/s
- flow west to east 0.02 m/m and downward from 0.02 to 0.46 m/m.
- <u>Soil</u>:


max. EC = 51 dS/m; max. Cl = 12,100 mg/kg (623 meq/L)

- <u>Groundwater</u>: max. EC = 84,500 μS/cm, max. Cl = 42,500 mg/L
- Surface water:


max. EC = 13,800 μ S/cm, max. CI = 5,500 mg/L




104000 104120 104120 104040 104040 104040 10500 10500 10500 10520 10520 10520 10520 10500 10540 10560

IDENTIFIED IMPACTS

<u>SOIL</u>

- 47,000 m² >10 times background (24,000 m² onsite & 23,000 m² offsite)
- 20,000 m³ "severely" impacted (EC >10 dS/m, Cl >100 meq/L): 18,300 m³ onsite & 1,700 m³ offsite

<u>GROUNDWATER</u>

- salinity impacts correspond closely to extent of soil impacts
- spreading very slowly
- groundwater in bedrock is not impacted

SURFACE WATER

- salinity impact in ditch water at least 230 m east of site
- salinity impact reaching permanent pond 180 m south of site

RISK MANAGEMENT FACTORS

CONTAMINANT

sodium chloride, toxic to plants, invertebrates, animals

PATHWAYS

- migration in groundwater is slow (20 cm/year)
- migration in surface water very fast <u>RECEPTORS</u>
- permanent pond and ditch
- no impact to groundwater in bedrock <u>FUTURE LAND USE</u>
- Incorporate the site into an expanded highway

RISK MANAGEMENT OPTIONS

SOURCE REMOVAL

 Excavate and remove 20,000 m³ of "severely" impacted soil.

Advantages:

- eliminates primary source of salinity
- migration of salinity in groundwater and surface water is reduced

Disadvantages:

- high cost
- does not remove all salinity impacts

RISK MANAGEMENT OPTIONS

SOURCE ISOLATION

Cover "severely" impacted area with impermeable liner (geomembrane or clay)

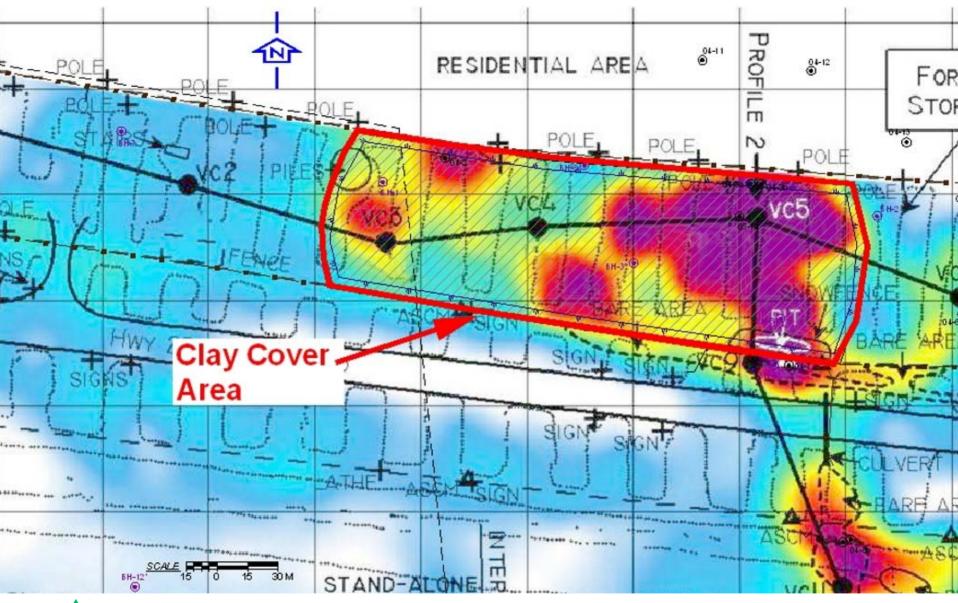
Advantages:

- reduced off-site migration of salinity in surface water
- reduced vertical migration of salinity in soil column

Disadvantages:

- major source of salinity impact remains
- soil management plan required for redevelopment

SELECTED RISK MANAGEMENT PLAN


IMPERMEABLE CLAY COVER (for short term management)

- 30 cm compacted clay over "severely" impacted area (11,700 m²)
- 30 cm subsoil over entire site (24,500 m²)
- 15 cm topsoil over entire site
- vegetate with grasses over entire site <u>MONITORING</u>
- Semi-annual groundwater monitoring/sampling
- Annual surface water monitoring

TRIGGERS

- Consistent/persistent increase in off-site groundwater chloride concentrations >800 mg/L (AENV Aquatic Life = 860 mg/L)
- Consistent/persistent increase in bedrock groundwater chloride concentrations to >250 mg/L (CDWQ)
- Chloride concentration in surface water discharging from site is >800 mg/L (AENV Aquatic Life = 860 mg/L)

INSTALLATION OF CLAY COVER

<u>SCOPE</u> – detailed design, preparation of request for proposals, bid evaluation, project management

RESULTS

- Monitoring wells extended in September 2006
- Clay cover, sub soil and top soil placed in November 2006
- Seeded in September 2007

SPECIAL CONSIDERATIONS

- Working around monitoring wells
- Removing asphalt, power poles, fencing, foundations
- Working in residential area (noise, dust, curiosity)
- Natural gas pipeline crossing

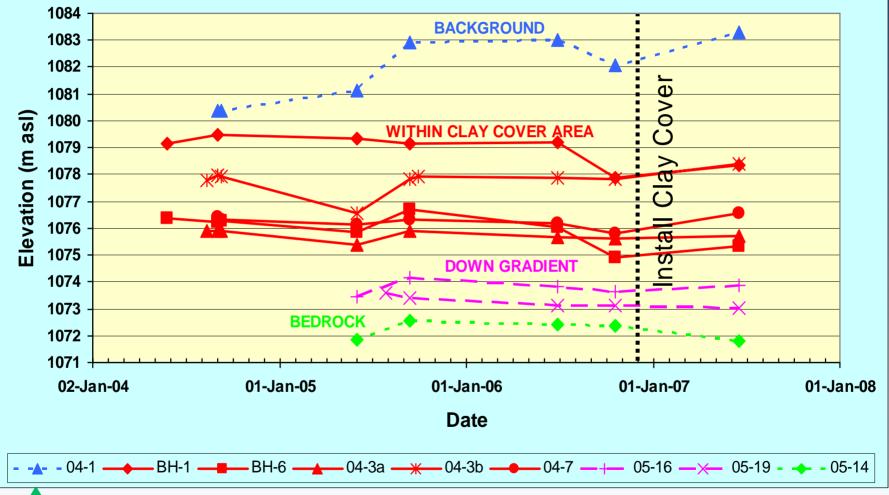
KEY QUANTITIES

SOIL QUANTITIES

- Compacted clay = 3,500 m³
- Subsoil = 7,600 m³
- <u>Topsoil = 3,500 m³</u>
- Total Soil Volume = 14,600 m³

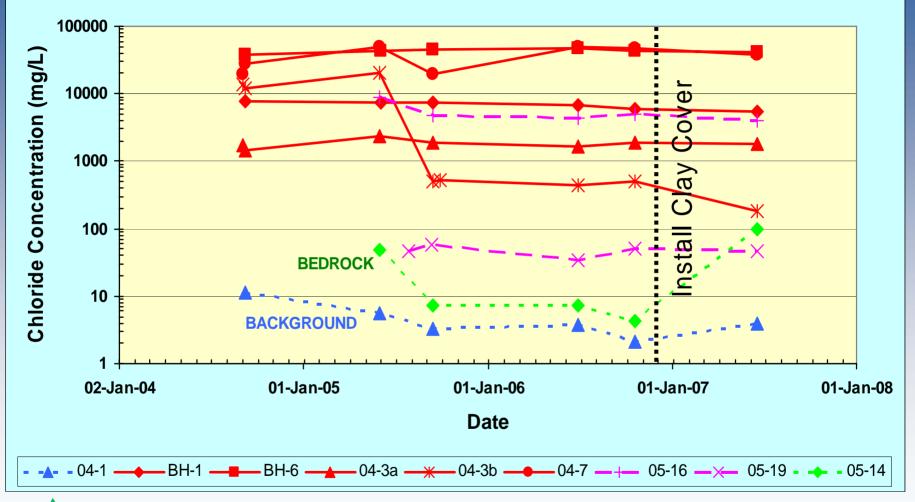
OTHER QUANTITIES

- Asphalt area = $4,500 \text{ m}^2$
- Chainlink fence = 840 linear m
- Site surface area (seeding) = 24,500 m²

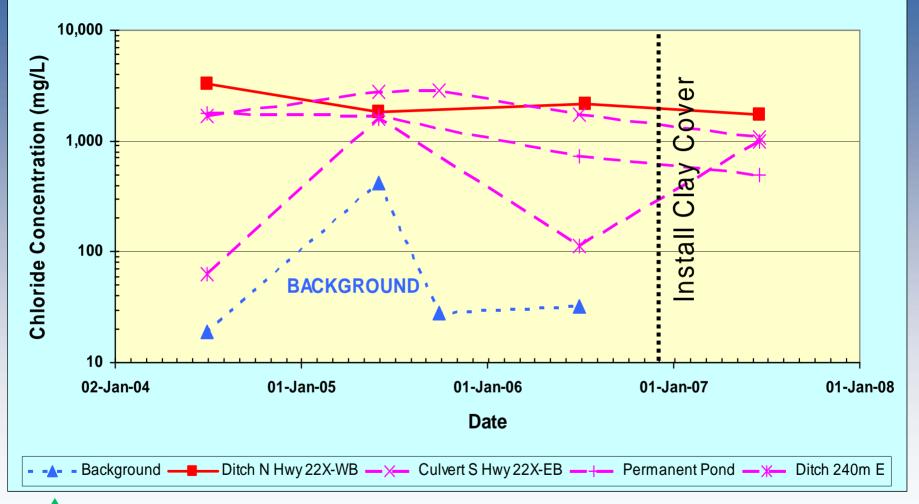


RESULTS TO DATE – June 2007

- Groundwater flow regime consistent with historical.
- Groundwater elevations similar to historical.
- Chloride concentrations in groundwater unchanged.
- Chloride concentrations in surface water have generally decreased.



GROUNDWATER ELEVATIONS



CHLORIDE CONCENTRATIONS IN GROUNDWATER

CHLORIDE CONCENTRATIONS IN SURFACE WATER

SUMMARY

- The storage of road salt at a former road salt storage yard has resulted in salinity impacts to shallow soil and groundwater, as well as off-site surface water.
- Risk management by source isolation and monitoring of the salinity impact was implemented, based on an assessment of the source, pathways and receptors, as well as future land use.
- The groundwater and surface water will be monitored to track changes in quality.
- Key features favoring this plan are:
 - Very slow salinity migration in the soils.
 - No impact to a potential groundwater aquifer.
 - Current land use presents no human health risks.
 - The site will be re-developed in the future.

- Thanks to the City of Calgary and Trent Parks
- Questions?

