

PASSIVE AND NATURE-ASSISTED REMEDIAL TECHNOLOGIES FOR REMOTE SITES

Jamie Natusch, P.Eng. Wayne McPhee, M.Eng., MBA Matthew Pullen, P.Eng.

Introduction & Context

- Remote Site Challenges
 - Power
 - Services
 - Access
 - Manpower

- Remote Site Opportunities
 - Time
 - Passive, Nature-Assisted Remediation Programs

Balance between:

Capital Investment vs Speed of Clean-up

The Desert Island Analogy

- Remote Site ~ Desert Island
 - No available remedial technologies, equipment, services, utilities, manpower or site access
- Abundant Natural Resources
- Abundant Naturally Occurring Processes
- Opportunity to Harness and Enhance for Remedial Intervention

The Toolkit

- Wind, Solar & Hydro Power
- Photo-Chemical Reactions
- Hydraulic Transport
- Wetlands
- Natural Attenuation
- Phyto-Remediation
- Phyto-Transformation
- Soil Amendment

Wind, Solar & Hydro Power

- Wind power → capture and conversion of wind energy into mechanical energy or electricity, using wind turbines
- Solar power → conversion of sunlight into heat, chemical reactions, electricity and mechanical power via photovoltaic cells
- Hydro Power → transmission of moving water into mechanical energy and electricity
- Run of River → natural stream/river flow transfer to hydroelectric power

Photo-Chemical Reactions

- Photo-chemical energy (UV light) stimulates chemical destruction reactions in controlled environments
 - Ponds
 - Wetlands
 - Engineered Environments

Wetlands

- Naturally occurring or constructed on-site
- Leverages
 - Reactions via micro-organisms in water and plant root zones
 - Direct solar reactions from the sunlight

Hydraulic Transport Mechanisms

- Dissolved and Separate Phase Fluid Flow
- Hydraulic Gradient Control
- Pipe and Channel Flow

Natural Attenuation

- Chemical, Physical and Biological Processes
 - Sorption
 - Volatilisation
 - Biodegradation
 - Dispersion
 - Dilution

Phyto-Remediation

- Chemical Extraction via transpiration
- Contaminant uptake via plant root systems
- Storage in roots, stems and leave biomass
- heavy metals, some organics and salt

Phyto-Transformation

- Plant metabolism of contaminants
- Micro-organisms in plant root systems metabolism of contaminants in soil/water
- some organic pollutants, hydrocarbons, pesticides, explosives and solvents

Soil Amendment

- Bioremediation enhancement with available vegetation
- Application to bio-piles and landfarms
- Reduction of fertilizer needs

Geology

- Sand and Silty Sand unit containing shallow groundwater at 2.5m
- Sand underlain by Clay unit with sand lenses
- Chlorinated solvent plume in shallow groundwater
- Primary contaminant is Vinyl Chloride

Design Challenges

- Control of off-site migration
- Restoration of on-site soil and groundwater quality
- Reasonable timelines
- Cost effective remedial strategy

- Phyto-Barrier Boundary Control
- Nutrient Testing
- Hydrogeological Evaluation (1m/yr)
- Hybrid Poplar/Willows
 - Root Zone Structures (2m)
 - Max Transpiration after 3-4 years
- Theis Draw-Down Model
 - 150m³/yr, 1-2m drawdown radius (yrs 1-3), increasing yrs 4+
- Winter Conditions
 - Dormant Growth vs Groundwater Flow
- Installation
 - 2m between trees, 3m between rows, 2m bgs
 - Soil Amendments nutrients and vegetation
 - Lateral perforated PVC pipes in trenches aeration/nutrients

Project Case Study 1 Results

- Initial height -> 1m; 1st Spring -> 2m
- 6 months -> 3-4m; 2years -> 15-20 m
- Remedial Activity
 - Combined transpiration and microbial activity in root zones
- 3400 ug/L VC up-gradient
- < 1 ug/L VC down-gradient</p>
- >99% Reduction across phyto-barrier
- < Regulatory Criteria

ERM

- Petroleum hydrocarbon (gasoline) plume
- Migration towards the site boundary
- Silts and sands underlain by Clay
- Shallow groundwater at 3m
- Primary design requirements
 - Low cost solution site not generating revenue
 - Boundary Control
 - Minimal O&M as site unused
 - No time constraints

• Perimeter Control

- Phyto-barrier
- Hybrid Poplar/Willows
- 2-row Boundary Control System
- Source and Central Plume Area
 - Wind-Powered Bio-sparging System
 - Windmill Shaft connect to Diaphragm Pump
 - Variable flows up to 30 psi
 - 3 x Sparge wells
 - Aeration to Accelerate Bioremediation and NA
 - Passive Operation no O&M

Designing with Wind Power

- Direct drive air pump
- Pressures up to 30psi
- Air accumulation in in-situ pulse tanks
- Pulse control with solar control panels or pressure release valves

Designing with Wind Power

- Flow Rates dependant on:
 - Windmill Design
 - Back Pressure on Air Line
- Back pressure calculated from water column being sparged
- 1 psi = 2.3 ft of water column + approx. 1 psi for break-out
- Average 3-6 Sparge Wells per Windmill

Designing with Wind Power

- Alberta Renewable Energy Test Site - Back-pressure of 1.5m of water
- Variable wind speeds using a 20-inch diameter windmill
- Range of air-injection flowrates at STP
- Average Wind Speeds of 10-30 km/h → 5-20 L/min (or 0.2-0.7 CFM)
- Maximum Winds Speeds
 > 40km/hr → 30-50 L/min (or 1-2 CFM)

Sparging Performance versus Wind Speed

- Perimeter Results
 - 90% Concentration Drop across
 Phyto-Barrier in 1-year
 - 5% Tree loss physical damage
- Central Plume Results
 - 75% Concentration Reduction Across Source Area in 1-year

Summary

- Remote Site Challenges & Opportunities
- The Desert Island Analogy
- Nature Assisted Remediation: The Toolkit
- Case Study 1:
 - 99% Reduction over Phyto Boundary (2-years)
- Case Study 2:
 - 90% Reduction at Perimeter over Phyto Boundary (1-year)
 - 75% Reduction in Source Area from Wind-powered Bio-Sparging

Summary

- Successful remediation design balances the capital investment required and the speed of cleanup.
- For remote sites, it is often most economical to evaluate passive systems over longer time periods.
- Passive, Nature-Assisted Remedial Technologies also applicable to non-remote sites where remedial timelines are not limited.
- Discussion paper to promote information sharing and further application Nature-Assisted Remediation Technologies.

