

- Hydrochemistry and redox reactions
- Simplified redox levels
- Mapping redox conditions
- Plume stability
- Attenuation rates

"Tales sunt aquae quales terrae per quas fluunt" (Plinius, 74 AD)

Translation:

"the composition of water reflects the material it contacted"

But also:

"a good set of groundwater quality data gives valuable information about subsurface conditions"

"The mobility, dissolution, degradation, toxicity of inorganic and organic substances in or in contact with the water phase strongly depends on the redox potential of the system" (Stumm & Morgan, 1981).

Example benzene degradation (Howard et al., 1991):

- Half-life aerobic: 10 days
- Half-life anaerobic: 24 months

"Direct measurements of redox potential (using redox electrodes) should be conducted as sloppy as possible to deter scientists from using the data... " (Anonymous)

Typical sequence of biodegradation reactions for benzene (after Armstrong et al., 1999 and Borden et al., 1995)

Aerobic Respiration:

$$C_6H_6 + 7.5 \frac{O_2}{O_2} -> 6 CO_2 + 3 H_20$$
 (1)

Denitrification (when oxygen is depleted):

 $C_6H_6 + 6 H^+ + 6 NO_3^- \rightarrow 6 CO_2 + 6 H_20 + 3 N_2$ (2)

Manganese Reduction:

 $C_6H_6 + 15 MnO_2 + 30 H^+ \rightarrow 6 CO_2 + 15 Mn^{2+} + 18 H_20$ (3) Iron Reduction:

 $C_6H_6 + 30 \text{ Fe}(OH)_3 + 60 \text{ H}^+ -> 6 \text{ CO}_2 + 30 \frac{\text{Fe}^{2+}}{\text{Fe}^{2+}} + 78 \text{ H}_20$ (4) Sulphate Reduction:

 $C_6H_6 + 3.75 \frac{SO_4^{2-}}{SO_4^{2-}} + 7.5 H_2O > 6 CO_2 + 3.75 H_2S + 3 H_2O$ (5) Methanogenesis:

 $C_6H_6 + 4.5 H_2O \rightarrow 3.75 CH_4 + 2.25 CO_2$ (6)

Reaction sequence (Stuyfzand, 1993)

FIG. 2.11 General classification of the natural redox environment, based on the presence or absence of the main redox components of water : O_2 , NO_3^- , SO_4^{2-} , Fe, Mn and CH_4 . Subsoil passage is assumed as piston flow in a system, which is closed from the atmosphere and progressively richer in organic carbon. The initial O_2 , NO_3^- and SO_4^{2-} concentrations (at the water table) are set at 10, 20 and 25 mg/l, respectively. The indicative redox potentials at pH = 7 (E_H7) are derived from Stumm & Morgan (1981).

Redox indicators

Redox indicators

Staining

Banff Springs

Fe³⁺

CREATING AND DELIVERING BETTER SOLUTIONS

Drain from old tank farm

CREATING AND DELIVERING BETTER SOLUTIONS

Oxic zone (ox): Dissolved oxygen is between 1 mg/L and nearsaturation, nitrate is stable but dissolved iron and manganese are not present in appreciable concentrations.

Suboxic zone (So): In this redox situation nitrate is nearly completely reduced (less than 1 mg/L), dissolved manganese is present in concentrations greater 0.1 mg/L without accompanying dissolved iron increase.

Anoxic zone (ao): nitrate has been reduced, iron and manganese occur in concentrations greater than 0.1 mg/L, also evidence that sulphate reduction is occurring.

Other important information:

- Site history, contaminant sources
- Mechanism of impact
- Contaminant characteristics; mobility, breakdown products
- Borehole logs (stratigraphy, soil colour, vapour readings)
- Well completion including screen length
- Groundwater and sediment colour
- Odours (e.g H₂S), gas bubbles, stained bailers

www.eba.cz

Case History – Highway Maintenance Yard

- Former service station and bulk fuel plant
- Salt storage between mid 1980s and 1997
- Hydrocarbon impact near highway
- Full remediation not feasible; source removal conducted in 2004
- Monitored natural attenuation of residual impact

Case History: Highway Maintenance Yard

	Monitoring Well Location								
Paramotor	Till				Bedrock				
i arameter	BH12		BH35		BH11		BH36		
	Nov-04	Nov-05	Nov-04	Nov-05	Nov-04	Nov-05	<u>Nov-04</u>	Nov-05	
pH (lab)	7.0	6.3	7.0	7.6	6.9	7.1	7.5	7.0	
pH (field)	6.95	6.98	7.49	7.54	7.00	6.64	7.49	6.88	
Dissolved Oxygen (field)	2.78	1.12	0.87	2.10	0.78	9.90	0.90	1.20	
Temperature (field)	8.2	6.8	8.3	8.6	8.4	6.4	8.26	8.2	
Total Dissolved Solids (TD	<u>1,450</u>	<u>6,570</u>	<u>1,260</u>	<u>536</u>	<u>2,850</u>	<u>2,660</u>	<u>1,130</u>	<u>1,110</u>	
Hardness	480	3,810	500	135	1,630	1,450	241	536	
Chloride (Cl)	<u>321</u>	<u>3,810</u>	<u>421</u>	46.9	<u>1,200</u>	<u>1,110</u>	176	<u>408</u>	
Sulphate (SO ₄)	14.0	9.9	18.4	45.1	362	375	221	16.7	
Bicarbonate (HCO ₃)	1,080	1,020	671	474	606	638	626	548	
Nitrate/Nitrite - as N	0.08	0.94	0.72	< 0.05	0.16	0.13	< 0.05	0.61	
Iron (Fe)	< 0.01	<u>4.06</u>	< 0.01	0.05	<u>1.00</u>	<u>0.64</u>	< 0.01	0.03	
Manganese (Mn)	<u>1.61</u>	<u>13.30</u>	< 0.01	<u>0.21</u>	<u>1.27</u>	<u>0.96</u>	<u>0.10</u>	<u>6.20</u>	
Benzene	<u>1.5</u>	2.8	< 0.005	< 0.005	<u>0.014</u>	<u>0.079</u>	< 0.005	< 0.005	
Inferred redox condition:	SO	AO	OX	SO	AO	AO	OX/SO	SO	

Case History: Gas Plant

- Natural gas processing plant
- Sandy soils
- Subsurface disposal of condensate in 1980s
- Liquid condensate plume ~1,500 m³
- Only redox conditions assessed and contaminant distribution monitored prior to 2006
- Source removal initiated in 2006

Case History: Gas Plant

BTEX

Parameter	BH35 (Downgradient)											
	13-Aug-99	7-Dec-99	18-Jul-00	8-Dec-00	18-Jul-01	19-Dec-01	6-Dec-02	14-Nov-03	14-Dec-04	27-Oct-05		
Petroleum H	lydrocarbor	IS										
Benzene	<u>0.34</u>	<u>0.098</u>	<u>0.072</u>	<u>0.014</u>	<u>0.052</u>	<u>0.027</u>	<0.0005	<0.0005	0.0009	0.0044		
Toluene	<0.0005	< 0.0005	< 0.0005	0.012	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		
Ethylbenzene	0.001	< 0.0005	< 0.0005	0.003	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		
Xylenes	0.0027	0.003	0.002	0.073	0.0023	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		
Total Volatile	0.34		<0.1									
Total Extract	<0.05		0.07									
Total Petrole	0.34		0.07									
$F1(C_6 \text{ to } C_{10})$								<0.1	<0.1	<0.1		
F2 (>C ₁₀ to C	; ₁₆)							<0.05	<0.05	<0.05		
F1-BTEX								<0.1	<0.1	<0.1		

Redox Sensitive Parameters

Daramatar	BH03	BH05*	BH08*	BH17**	BH24**	BH30					
r di diffetei	27-Oct-05	6-Dec-02	6-Dec-02	6-Dec-02	6-Dec-02	8-Dec-00	19-Dec-01	6-Dec-02	14-Nov-03	14-Dec-04	
General Parameters	Upgradient										
pH (Lab. measurement)	7.9	6.8	6.9	7.4	7.6	7.1	7.5	7.5	7.2	7.9	
Total Dissolved Solids (TDS)	905	847	823	807	640	538	419	441	423	425	
Hardness	794	695	793	755	520	477	399	394	373	363	
Chloride (Cl)	10	25.7	23.4	6.5	3.5	4.4	4	4.7	3.3	4	
Sulphate (SO ₄)	91.5	1.4	24.4	35.8	89.7	36.9	48.2	37.5	42.2	38.6	
Nitrate-N	40.7	<0.05	0.32	8.26	4.90	0.05	0.2	2.18	3.82	4.2	
Ammonia-N	< 0.05	9.44	0.43	<0.05	<0.05	0.1	<0.05	<0.05	<0.05	<0.05	
Iron (Fe)-Dissolved	<0.06	53.5	12.3	<0.005	<0.005	0.029	0.008	<0.005	<0.01	<0.06	
Manganese (Mn)-Dissolved	<0.01	0.434	2.93	0.545	0.446	1.71	0.793	0.307	0.08	<0.01	
Total Kjeldahl Nitrogen	<0.2	26.4	4.5	0.7	1.3	1.9	3.2	9.3	0.7	0.5	
Dissolved Organic Carbon	5			5	6	12	6	3	4	9	
Inferred Redox Condition:	Oxic	Anoxic	Anoxic	Suboxic	Suboxic	Suboxic	Suboxic	Suboxic	Oxic	Oxic	
* - Within LPH plume											
** - Downgradient of LPH plume											

Use redox conditions to determine if a zone of affected groundwater will:

- Increase in size
- Remain the same
- Shrink

Increasing plume or affected zone

- Concentrations increase between monitoring events
- Continued leaching from soil exceeds the natural attenuation capacity
- May suggest source control needed

- Concentrations are the same between successive monitoring events
- Leaching from the soil is balanced by natural attenuation capacity
- No source control needed may need to management of affected groundwater - receptor sensitivity

- Concentrations at monitoring points decrease with time (allowing for seasonal variations)
- Leaching from soil less than attenuation capacity
- No source control needed a reliable means of assessing the performance of remedial action

Tools for predicting plume stability

- Concentration vs distance plots for three or more monitoring points
- Concentration vs time plots for individual monitoring points

Concentration vs distance

Three monitoring wells

www.eba.ca

CREATING AND DELIVERING BETTER SOLUTIONS

- Plot shows that Mn and Fe stable throughout the plume - lots of biological degradation occurring to support attenuation - not just dilution and dispersion
- First order degradation rate
- Slope of line for benzene ~ 0.13 mg/L/m

Concentration vs time

Single Monitoring well

www.eba.ca

CREATING AND DELIVERING BETTER SOLUTIONS

- Rate of decline predictable
- Slope of line ~0.01 mg/L/month (~ 0.12 mg/L/year)

Conclusions

- Redox indexing method useful for mapping contaminant distribution
- Redox zones help determining whether plumes are increasing, stable or shrinking
- Change of contaminant concentration with distance and time allow calculation of attenuation rates

CREATING AND DELIVERING BETTER SOLUTIONS

Questions?

www.eba.ca

EBA Engineering Consultants Ltd.