

DRAFT Tier 2 Framework for Adjusting Eco-Contact Soil Criteria

ESAA Remediation Technologies Symposium October, 2007 Presented by: Craig Harris

DRAFT Tier 2 Adjustments to Eco-Contact Soil Criteria ESAA Rem Tech, October 2007

Tier 2 Eco-Contact Adjustments: Outline of Presentation

- Tier 2 Eco-Contact Decision Flow Chart
 - How much delineation?
 - Dealing with heavy clay soil/ sub-soil
- Tier 2 Eco-Contact Absolute Pass/ Fail Flow Chart
 - Define Full Testing Battery
 - Analytical Requirements
 - Define Tier 2 Pass
- Tier 2 Provisional SSRO Flow Chart
 - SSRO Development Protocols
 - Examples of Quantitative Analysis of Toxicity Data

DRAFT Tier 2 Adjustments to Eco-Contact Soil Criteria ESAA Rem Tech, October 2007

UMA AECOM

How Much Delineation is Required?

< Land Treatment Soil

Define the upper limit PHC concentration. Temporal trend – are treatments effective? Have amendments influences soil chemistry? (nutrients, conductivity, phenols etc..).

<u>Complex Surface Soil</u> >

Spatial PHC distribution (grid pattern). Full concentration range including outliers. Other contaminants (metals, major ions) and basic soil characteristics (texture, nutrients, organic carbon).

UMA

AECO

Dealing with Clay Till: Laboratory Soil Amendments

Objective is to improve soil textural and nutrient quality to support earthworm and plant survival.

- High degree of manipulation of original clay soil.
- Are field soil conditions adequately represented?
- Are there reductions in PHC concentrations or bioavailability?

Preliminary Approach (Tier 2 Pass/Fail)

UMA

AECOM

DRAFT Tier 2 Adjustments to Eco-Contact Soil Criteria ESAA Rem Tech, October 2007

Designing Bulk Soil Collection Program

Sampling Program Rationale

- Target soil that fails Tier 1
 - Worst case soils from land treatment stockpiles.
 - Capture range of field PHC gradient for complex sites.
- Avoid lighter PHC fractions, or mono aromatics, subject to alternate limiting pathways (e.g. groundwater mediated).

Volumes Required

 8 L plastic pail *minimum* - enabling optimized replicates for a full testing battery on undiluted site samples.

Field Reference Soil

- Match physicochemical characteristics of the contaminated site soil, but be free of contamination
- For ex-situ land treated soil:
 - a relatively uncontaminated (within Tier 1) soil which has undergone the same degree of *ex-situ* manipulation; and
 - the natural parent soil, undisturbed and devoid of any contamination.

Suggested Soil Analytical Program

Step 1 – Delineation Samples

- CCME PHC fractions
- Confirm PAH concentrations
- Grain size/ texture
- Organic carbon (especially for peat soil)
- Nutrients
- Other contaminants are confirmed to be absent metal, salinity

Step 2 – Bulk Toxicity Samples

- CCME PHC fractions (required for all)
- OC, nutrients (optional)
- pH, Conductivity, Moisture Content and Water Holding Capacity (Lab completes on "conditioned" test soil)
- Step 3 Toxicity Samples post-amendment (if required)
 - CCME PHC fractions (selection)

Preliminary Chronic Full Testing Battery

Northern wheatgrass and at least one additional plant species tested for:

- emergence success
- root growth endpoints (length and dry biomass)
- shoot growth endpoints (length and dry biomass)

Two chronic soil invertebrates tested for:

- earthworm survival (adult survival)
- earthworm reproduction (mean # juveniles per treatment)
- juvenile growth (mean dry weight of individual live juveniles)
- collembolan survival (adult survival)
- collembolan reproduction (mean # progeny per treatment)

Testing battery can yield a *maximum* of 11 data points.

DRAFT Definition of Tier 2 Pass

Test results must meet the following criteria -

- Test designs must be capable of detecting a 25% difference;
- Statistical differences between treatment and reference must be < 25% for at least 75% of endpoints, and
 - No more than one endpoint per test species may exceed the 25 % difference.
- Test organism mortality in treatment soils must be no greater than mortality in reference soils; and
- Invertebrate reproduction in treatment soils must not be less than 50 % of that observed in reference soils.

A commercial/ industrial Tier 2 pass

Criteria similar except the permissible difference between reference and treatment endpoint responses is < 50 % (EC50)

Pass or Fail: Individual Sample Failure vs. Overall Concentration – Response Relationship

UMA AECOM

DRAFT Provisional Tier 2 SSRO

Provisional SSRO Development

CCME (2006) protocols for weight of evidence approach

- Minimum of 10 data points with at least two soil invertebrates and two crop or plant species represented
- Estimate threshold effects (ECx/LCx/ICp)
- Establish concentration-response relationship with -
 - undiluted site soils (site gradient)
 - lab serial dilution (dilute toxic samples into multiple treatments)

Use the effects thresholds normalized around 25th percentile to construct an estimated species sensitivity distribution (ESSD)

- ESSD defined as a mathematical probability distribution function, either linear, or non-linear
 - 25th percentile of ESSD (sensitive land use)
 - 50th percentile of ESSD (commercial land use)

Concentration – Response Strong Relationship

UMA AECOM

Probit Estimate of ECx/ LCx

Estimated Species Sensitivity Distributions

Project Authority

Gordon Dinwoodie Alberta Environment, Environmental Policy Branch Edmonton, AB

Senior Scientific Advisors

Doug Bright UMA Engineering Ltd. Victoria, BC

Norman Sawatsky Alberta Environment, Environmental Policy Branch Edmonton, AB

