

Cleaning Up a Salt Spill:

Predictive Modelling and Monitoring Natural Attenuation to Save Remedial Costs

CONSULTING ENGINEERS AND SCIENTISTS

Edmonton • Calgary • Vancouver • Nanaimo • Kelowna • Inuvik

Lethbridge • Fort St. John • Whitehorse • Yellowknife

- Introduction
- Remedial Alternatives
- Alternate Approach: Site Assessment and Predictive Modelling
- Importance of Predictive Modelling for Remediation by Natural Attenuation

- Site located in central Alberta.
- Pipeline break on September 6, 2002 caused by corroded pipe.
- Approximately 5,250 m² affected area.
- Initial spill response (by others):
 - standing fluid (produced water and oil) removed by vacuum truck;
 - trenches excavated along and downslope of spill area;
 - limited soil and trench water quality data collected; and
 - geophysics survey (EM 38).
- Shallow groundwater table present.

Site Plan

00

Remedial Alternatives (16,000 m³ in situ)

- Traditional dig and dump (\$2.1M to \$2.5M).
- Pump and deep well disposal (\$1.0M to \$1.3M).

EM38 Survey (September 2002)

EM38 Survey (September 2002, 2003)

- Electromagnetic (EM) survey 2004.
- Groundwater flow regime.
- Soil and groundwater quality data.
- Vegetation survey.
- Predictive modelling vs. observed water quality.

Site Assessment: EM Survey (2003, 2004)

www.eba.ca

Site Assessment: Groundwater Flow Regime

www.eba.ca

Site Assessment: Groundwater Flow Net

HORIZONTAL SCALE: 1:800 VERTICAL SCALE: 1:100

www.eba.ca

- Fall 2002 (spill response info in source area):
 - maximum chloride (CI) concentration of 39,100 mg/Kg; and
 - maximum sodium adsorption ratio (SAR) of 49.7 dS/m and electrical conductivity (EC) of 29 dS/m.

Site Assessment: Soil Chloride Concentration (Spring 2005)

Site Assessment: Soil SAR Concentration (Spring 2005)

Spring 2005

- Spill Area:
 - chloride in shallow well (523 mg/L); and
 - chloride in deep (bedrock) well (27 mg/L).
- High EM38 Area:
 - chloride in shallow well (747 mg/L); and
 - chloride in deep (bedrock) well (6 mg/L).

Site Assessment: Dissolved Chloride Concentration Profile Along Plume

- White spruce trees dying because of waterlogged conditions.
- Waterlogged conditions predate 2002 pipeline spill.
- Some regeneration occurring, but growth is inhibited because of salt water spill.
- Restoration plan for site reclamation provided to client.

× 3

CREATING AND DELIVERING BETTER SOLUTIONS

000

00.0

00

ODAG

BASE: 1983 AERIAL PHOTOGRAPH

BASE: 1993 AERIAL PHOTOGRAPH

- Trees not killed by salt spill.
- Chloride concentrations not affecting bedrock aquifer.
- Chloride plume moving, but decreasing over time.
- What's the process? Can this be sustained and at what rate?

Conceptual Salt Leaching Model

Conceptual Transport Model

www.eba.ca

Conceptual Transport Model

Model Calculation Results

Groundwater Quality

www.eba.ca

Model Calculation Results (Comparison to Analytical Data)

www.eba.ca

Fate and Transport: What processes are occurring?

- Upward vertical groundwater flow direction (Vu):
 - salts not being transported deeper; and
 - enhances soil flushing.
- Horizontal flow 45 m/year (Vi):
 - provides natural flushing capacity.
- Infiltration rate (Vr):
 - provides groundwater recharge; and
 - enhanced by ponding (drainage course disrupted).

- Met remedial objectives within four years of the spill.
- Natural attenuation effective for remediating this salt spill.

- Traditional Dig and Dump (\$2.1M to \$2.5M).
- Pump and Treat \$1.0M to \$1.3M.
- Natural Attenuation:
 - \$50,000 for site assessment;
 - \$10,000 for predictive modelling; and
 - \$20,000 for ongoing EM survey and groundwater quality monitoring (3 years).
- Preferred Remediation Option?
 - cost Saving of \$900,000 to \$2.3M;
 - remediation complete within 4 to 6 year timeframe; and
 - minimal surface disturbance.

- Site Assessment: EM survey and attenuation with time (mass spreading with time).
- What's the process? Can this be sustained and at what rate?
- Impact of CI off site?

- Continue monitoring (EM survey, groundwater quality).
- Evaluate EC/SAR in soils and need for amendments.
- Engage stakeholders [Alberta Environment (AENV)/landowner].
- Implement restoration plan:
 - improve surface drainage after remediation goal achieved; and
 - revegetate area and weed control .

Questions??

www.eba.ca

www.eba.ca

EBA Engineering Consultants Ltd.