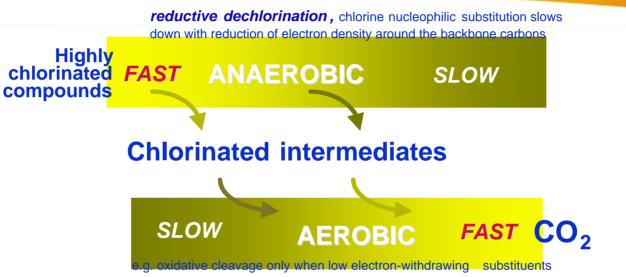
NRC · CNRC

From Discovery to Innovation...

The *eMaMoC* (electrolytic methanogenicmethanotrophic coupling) SYSTEM : A TOOL FOR BIOREMEDIATION OF CHLORINATED SOLVENTS

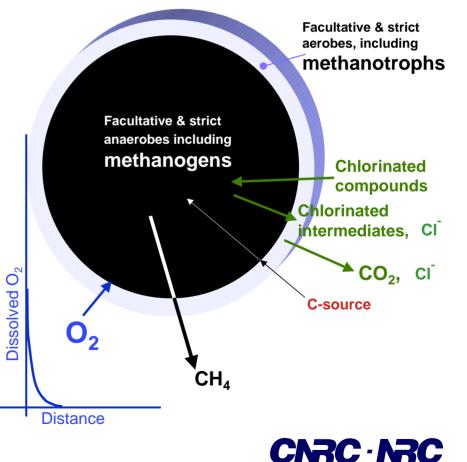
Boris Tartakovsky, Ruxandra Cimpoia, Michelle-France Manuel, Marie-Josée Lévesque, Jérôme Breton, and Serge R. Guiot

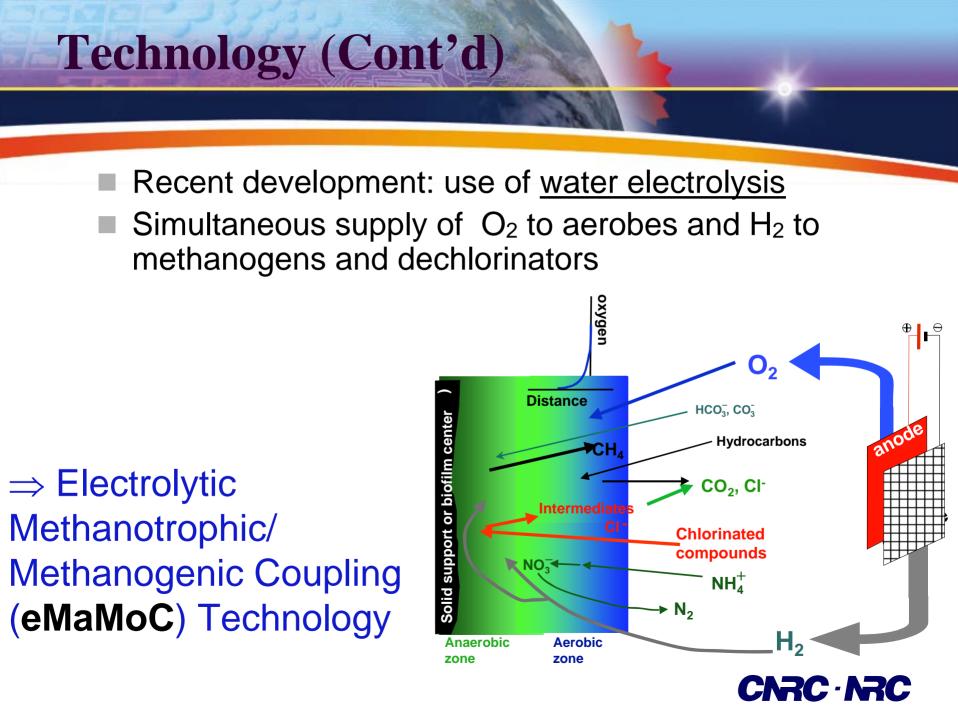
Biotechnology Research Institute, Montreal, Quebec, Canada


Problem

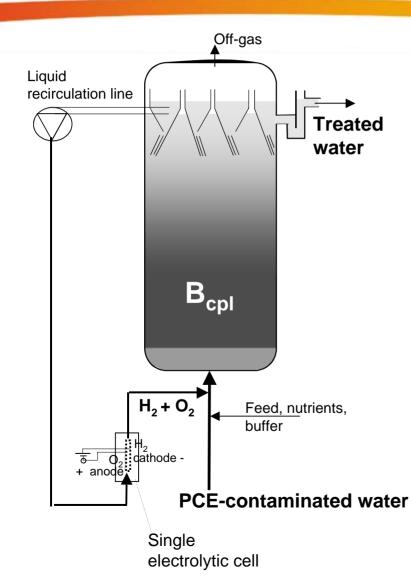
- Environment contamination by chlorinated organic compounds including chlorinated solvents
- Since the 1940's, intensive use (as degreasers, solvents, reactants...) and disposal by a variety of industries
- Low rates of natural attenuation
- In Canada: over 1,000 tons per year of chlorinated solvents enter the Canadian environment
- Costly and difficult decontamination

Approach


- reductive dechlorination by anaerobic bacteria, including methanogens, sequentially reduces the number of chlorines of highly chlorinated organic compounds (e.g. PCE)
- reductive dechlorination often results in accumulation of intermediates (e.g. DCE, vinyl chloride)
- in contrast aerobic microorganisms, methanotrophs in particular, are efficient degraders of less chlorinated compounds
- complete biodegradation requires a combination of anaerobic and aerobic conditions (unless *Dehalococcoides* are present)



Technology


Coupled anaerobic-aerobic bioremediation is based on coexistence of <u>anaerobic</u> and aerobic bacteria in a biofilm

- Anaerobes can perform rapidly first dechlorination steps and produce methane
- Presence of O₂ and CH₄ is expected to promote the growth of methanotrophic bacteria, which may cometabolically oxidize the less chlorinated intermediates left over by the anaerobic transformation

PROOF OF CONCEPT AT LAB-SCALE

Preliminary evaluation as a single-stage system

Experimental setup and conditions

- 5-L glass-made reactors (ID 10 cm)
- inoculated with unadapted anaerobic sludge granules
- v_{UP} between 0.4 and 2 m/h
- temperature : 22°C
- electrodes (5 cmx10 cm) = titanium coated with iridium-dioxide
- electrical power applied : between 0.4 to 1.1 W (3 V x 140 mA - 4.5 V x 240 mA)
- oxygen generation rate : between 40 and 440 mg O₂/L_{rx}·d, with 20-95% transferred
- feed: PCE/EtOH-solution, nutrient solution (KH₂PO₄, K₂HPO₄, NH₄HCO₃), chloride-free trace metal solution

Abiotic tests: maximum 5% of dechlorination by the electrolysis alone

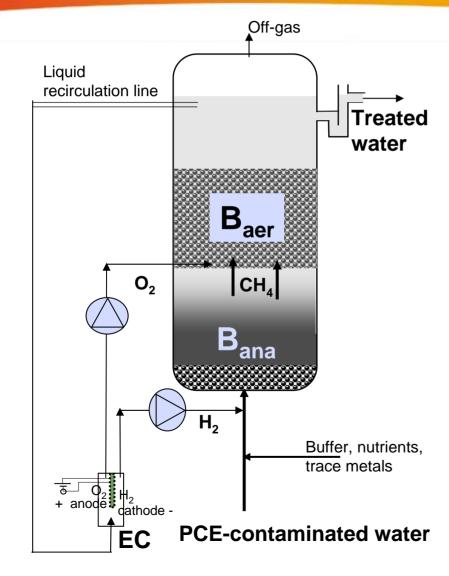
PCE degradation results of two single-stage 5-L eMaMoC reactors

Time	Dissolved O ₂ (DO)	V _{UP}	PCE in		PCE removed	1,2- <i>cis</i> - DCE out	Minerali- zation ⁽³⁾			
(month)	mg/L	m/h	mg/L	μM	% ⁽¹⁾	% ⁽¹⁾	%			
Reactor I: HRT 1 d										
1	0	2	6.1	37	94	92	2			
2-4	0.6-3	1	7.4	45	95	76	16±4			
5	3-4	1	5.6	34	98	46	48±4			
6	5-8	1	4.3	26	98	48	53±7			
Reactor II: HRT 6.3 d										
1-3	1.5	0.43	8.6	52	98.1 ⁽²⁾	65 ⁽²⁾	31±17			
4	2.3	0.75	8.6	52	99.5 ⁽²⁾	40 ⁽²⁾	58±8			
5-6	2.2	0.75	5.5	33	98.5 ⁽²⁾	14 ⁽²⁾	83±5			

temperature of 22-25°C

 v_{UP} liquid upflow velocity in reactor

⁽¹⁾ includes off-gas loss : PCE <2 %; DCE <4%


⁽²⁾ includes off-gas loss : PCE 0.1 %; DCE 0.02%

⁽³⁾ based on mole balance between the inlet PCE and all products in the outlets (off gas and liquid)

- higher DCE mineralization efficiency with an HRT of 6.3 days
- maximum mineralization efficiency = only 83%.
- mineralization limit probably related to oxidative degradation kinetics and/or DCE-oxidizing microorganisms content

Kinetics study of the eMaMoC system in the two-stage mode

- two-stage assembly ⇒ to segregate methanogens and methanotrophs
- bottom methanogenic zone, inoculated with unadapted industrial anaerobic granules
- upper methanotrophic zone, packed with perlite (granulated silicate), inoculated with activated sludge
- temperature : 25°C
- liquid upflow velocity : 0.5 2 m/h
- nutrients as above (ethanol load: 50 mg COD/L_{rx}-d)
- electrical power applied : 0.25-1.25 W
 (2.5 V x 100 mA 5 V x 250 mA)
- O₂ generated & transferred : 100-500 mg O₂/L_{rxr}-d, 80% transferred

Performance of the two-stage eMaMoC reactor,

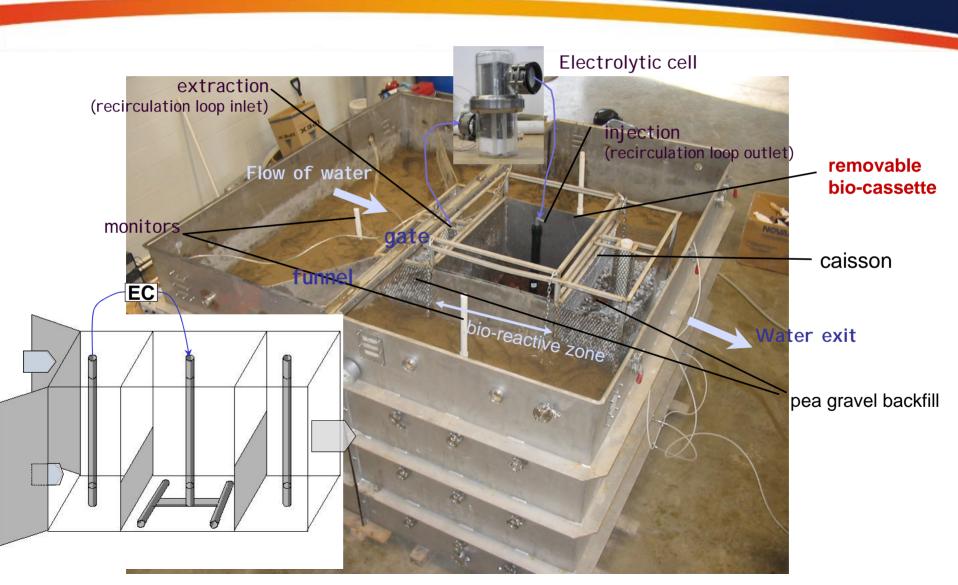
under various operational conditions, for an operational period of 24 months.

HRT d	PCE load mg/L _{rx} ád	ΡCE _{in} μΜ	PCE degrad. % ⁽¹⁾	DCE _{out} % ⁽¹⁾	Mineral- ization %	X ^{aer} rx	k ^{DCE} _{max}
1	6.2±1.3	34±6.6	98 ±0.1	49±3	49 ±5	~ 0.8	n.d.
4	0.9±0.2	22±5	95 ±3	34±10	62 ±10	~ 0.9	1.15
8	1.1 ±0.2	50±6	97 ±3	32±4	64 - 4		2.3
24	0.35 ±0.04	46±9	100 ±0	15±5	85 ±5	1.4	3.9
47	0.24 ±0.09	59±19	100 ±1 ⁽²⁾	5±6 ⁽²⁾	95 ±5		
9	0.79 ±0.4	42±13	97 ±4	7 ±2	89 ±3	1.65	4.5
5	1.3 ±0.5	41±11	100 ±0.1	23 ±19	77 ±19		
2 ⁽⁴⁾	4.82 ±0.2	53±1.2	99.5 ±0.5	<mark>98 ±8</mark>	0 ±8	1.33	

 X_{rax}^{aer} : biomass content in the aerobic upper compartment, reported to the overall reactor volume k_{max}^{DCE} maximum specific DCE mineralization rate

(1) includes off gas losses : PCE <1 %; DCE <1%

⁽²⁾ PCE, DCE not detected in off gas


⁽³⁾ based on mole balance between the inlet PCE and all products in the outlets (off gas and liquid)

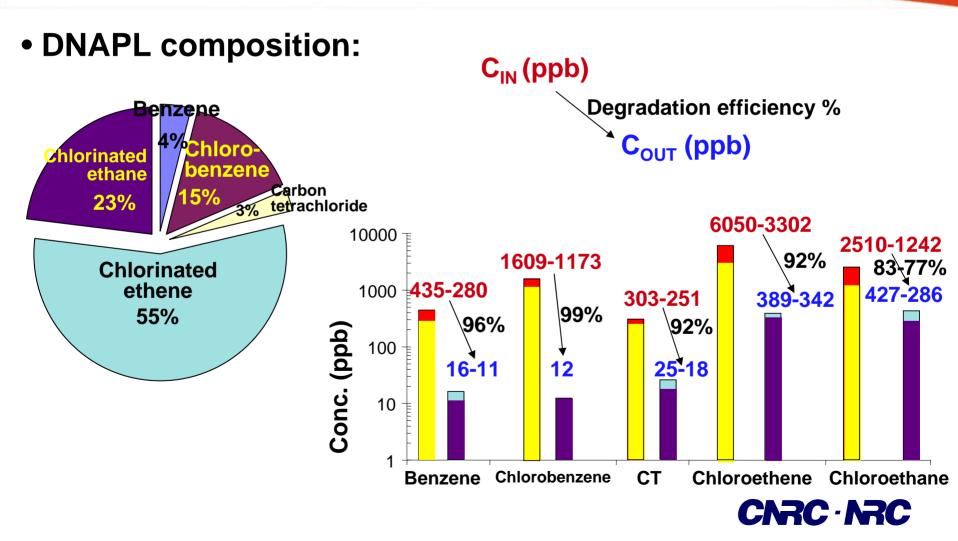
⁽⁴⁾ no electrolysis, only H₂ supply

VSS : volatile suspended solids

Pilot Scale : eMaMoC-based biobarrier within a funnel-&-gate remediation system

Pilot Scale : conditions and performance

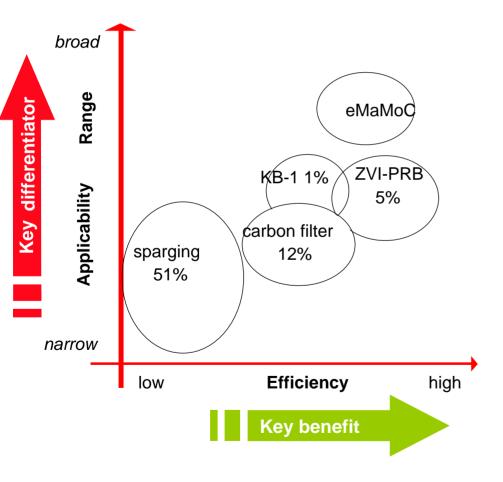
- Linear velocity of groundwater : ~ 15 cm/day.
- Temperature: 15-20 °C.
- Hydraulic retention time (HRT): between 4 and 6 days
- Amendments: grass fertilizer, sodium bicarbonate, ethanol (200 mg COD/L, pulse mode)
- Electrical power applied to the electrolytic cell : between 10 and 30 W
- Oxygen generated: between 30 and 100 g O₂ / m³ reactive barrierd, with 20 to 70% transferred to the liquid phase
- Dissolved O₂ in the recirculating liquid: between 1.8 and 3.5 mg/L
- Dissolved CH₄ in the recirculating liquid: between 1 and 12 mg/L


Pilot Scale : conditions and performance

- Inlet PCE concentration: between 1 to 22 µM (0.2 to 3.7 mg/L)
- PCE removal and mineralization, between 38 and 68% after 40 days of operation, then over 98% after 80 days
- Incidental increase of the PCE inlet concentration to 14 mg/L ⇒ still removal efficiency of over 97%, with effluent concentrations inferior to 50 ppb, for PCE, TCE and DCE, and of 157±33 ppb, for VC
- Inorganic chlorine balance between inlet and effluent: 9±4 mg/L for 14 mg PCE/L removed: i.e. 75±33% indicating a stoichiometric recovery

Pilot Scale :

performance with mixed DNAPL from a real site


Pilot Scale : enhanced bioremediation

- Recirculation by a submersible pump
- No amendments
- Inlet PCE concentration: 2 to 3.7 mg/L
- PCE removal and mineralization over 98%

Advantages

- Cost reduction: singlestage operation, efficient oxygen supply and transfer by electrolysis
- Hydrogen simultaneously produced at no extra cost
- Beneficial mutualism between anaerobes and aerobes
- Potential for complete degradation of a broad range of contaminants