LNAPL Volume and Mobility Estimation to Assess When to Stop Active Recovery

by Louis Sabourin, P.Eng. and David Tarnocai, P.Geo.

Presentation Outline

- Introduction, Issue and Importance
- LNAPL Migration & Concept in Subsurface
- Properties that affect LNAPL Volume and Mobility
- Study Methodology
- Case Studies (Site A Louis & Site B David)
 - Background: History and Remedial System
 - LNAPL and Soil Properties
 - Volume and Mobility Estimates
 - Remedial System Performance/ Final LNAPL
- Sensitivity Analysis
- Conclusions

Introduction

- Application of the API Interactive LNAPL Guide to estimate the volume and mobility of LNAPL at two former petroleum fuel storage facilities:
 - Site A impacted by Gasoline/Diesel
 - Site B impacted by Jet Fuel
- The Interactive LNAPL Guide is a web available system that includes:
 - educational information
 - assessment tools
 - other useful info on LNAPL

Issue and Importance

- In the past decade, complete LNAPL removal was considered fundamental to site closure
- This was before understanding:
 - LNAPL movement and removal limitations
 - LNAPL plume stability/Natural attenuation
- More recently, industry/consultants started to ask:
 - What is the practical extent of LNAPL removal?
 - When can LNAPL be declared immobile and not likely to impact surrounding areas?
- This study aimed at finding answers to these questions for two sites

LNAPL Migration in Subsurface

Major Factors of influence:

- LNAPL properties
 - Density
 - Viscosity
 - Interfacial and surface tension
- Soil Properties
 - Soil texture/porosity
 - Permeability
 - Capillary pressure vs saturation

After API, 2003

Effect of LNAPL Properties

Release of 1 M US Gal (4 ML) in sand for 5 years

Effect of Soil Properties

Release of 1 M US Gal (4 ML) of gasoline for 5 years

After API, 2003

Concept of LNAPL in Subsurface

Vertical Profile in Soil

Monitoring Well

Methodology - LNAPL Volume

- Well product thicknesses contoured and areas calculated
- An LNAPL saturation profile for each contour interval (average product) is defined using soil and LNAPL properties based on LNAST from API
- By integration of the saturation profile over the contour area, the volume of LNAPL is calculated

1.0m1.0m 0.5m 0.1m 0.05m

Methodology - LNAPL Mobility

 The inherent mobility of an LNAPL in a porous medium is calculated using (API, 2003):

			k kr _{LNAPL} ρ	lnapl g		K _{lnapl}		
where:			µ _{LNAPL} n S	S _{lnapl} -		n S _{LNAPL}		
k kr _{LNAPL} P _{LNAPL} g	: permeabil : relative pe (dimension : density of : gravitatior	ity of the ermeabili less) LNAPL nal const	porous me ty of the poi (M/L ³) ant (L/T ²)	dia (L ²) rous media	to LNAP	L (varies wit	h S _{lnapl})	2
µ _{LNAPL} n S _{LNAPL} K _{LNAPL}	: dynamic v : porosity o : fraction of (dimension : LNAPL co	viscosity f the pore pore spa less) onductivit	of LNAPL (N ous media (ace saturate y (L/T)	M/LT) dimensionle ed with LNA	ess) \PL			

Case Study – Site A Background

• Former Bulk Fuel Plant

- LNAPL discovered on-site in 1998 (Gasoline/Diesel)
- Geology: Fine sand
- Hydrogeology: K = 10⁻⁵ – 10⁻⁶ m/s Groundwater flow to southwest (5-25 m/y)
- Remedial Technologies

 1999-2001: Manual Product Bailing
 2001-2005: Dual-Phase High Vacuum Extraction (DPVE)

Site A - Layout and Surrounding Use

Site A - LNAPL and Soil Properties

• LNAPL Properties based on Analytical Results

LNAPL = Diesel Fuel (~80%) and Gasoline (~20%) Mixture $\rho = 0.81$ g/ml, $\mu = 1.7$ cP, $\sigma_{ow} = 27.9$ mN/m, $\sigma_{ao} = 25.6$ mN/m,

 Soil Properties based on Huntley & Beckett (2002) and LNAPL Guide Default Program Parameters

Fine Sand Van Genuchten $\alpha = 7.5 \text{ m}^{-1}$, n = 1.9 Residual Water Saturation = 0.32 LNAPL Residual Saturation = 0.20 Total Porosity = 0.43

Site A - Initial LNAPL Volume/Mobility

- Volume/Mobility estimated using site monitoring data collected prior to DPVE
- Spring 1999 LNAPL thickness and area: Up to ~0.9 m (680 m²)
- Total estimated volume of LNAPL initially present in the plume:
 Approx. 13,000 L
- Highest LNAPL mobility:
 0.8 m/day at S_{LNAPL} = 0.4

Site A - Remedial System Performance

Cumulative Hydrocarbon Recovery

DPVE started 2001

Initial DPVE hydrocarbon recovery rate ~20 L/day

Total volume recovered ~5,800 L (45%)

Final DPVE hydrocarbon recovery rate <2 L/day

Site A – Final LNAPL Distribution

LNAPL areal extent reduced considerably to

~100 m² (680 m²)

By 2005, LNAPL thickness in wells reduced to:

~0.45 m or less (~0.9 m)

Highest LNAPL mobility: **0.2-0.4 m/day at S_{LNAPL}= 0.1-0.2** (0..8 m/day at S_{LNAPL} = 0.4)

Majority of LNAPL below residual and essentially immobile

Case Study – Site B Background

- Former Airport Fuel Storage Facility
- LNAPL discovered on-site in 1998 (Jet A-1 Fuel)
- Geology: Fine sand
- Hydrogeology

 K = 2 x 10⁻⁶ m/s
 Almost flat gradient (no clear groundwater flow <u>direction divide</u>)
- Remedial Technologies
 - 1998-2002: Manual Product Bailing
 - 2002-2006: Low Vacuum Enhanced Product Skimming

Site B - Layout and Surrounding Use

Site B - LNAPL and Soil Properties

• LNAPL Properties based on Analytical Results

LNAPL = Jet A-1 $\rho = 0.81$ g/ml, $\mu = 1.6$ cP, $\sigma_{ow} = 25.2$ mN/m, $\sigma_{ao} = 26.6$ mN/m,

 Soil Properties based on Huntley & Beckett (2002) and LNAPL Guide Default Program Parameters

Fine Sand Van Genuchten α = 7.5 m⁻¹, n = 1.9 Field residual water saturation = 0.32 LNAPL field residual saturation = 0.2 Total porosity = 0.43

Site B – Initial LNAPL Volume/Mobility

- Volume/Mobility estimated using site monitoring data collected prior to skimming
- Spring 2002 LNAPL thicknesses and area: Up to ~ 2.4 m (1150 m²)
- Total estimated volume of LNAPL initially present in the plume: Approx. 67,000 L
- Highest LNAPL mobility:
 0.2 m/day at S_{LNAPL} = 0.6

Site B - Remedial System Performance

Cumulative Hydrocarbon Recovery

Vacuum skimming started in 2002 at low vacuum followed by moderate vacuum in 2003

Vacuum skimming recovery rate ~ 7 L/day

Total volume recovered ~5,500 L (<10%)

Final recovery rate <0.5 L/day

Site B – Final LNAPL Distribution

LNAPL areal extent reduced to: ~ **700 m²** (1150 m²)

By 2005, LNAPL thickness in wells reduced to: **~0.39 m or less** (2.4 m)

Highest LNAPL mobility: **0.07 m/day at S_{LNAPL}= 0.24** (0.2 m/day at S_{LNAPL}= 0.6)

Majority of LNAPL essentially immobile in absence of significant thickness and gradient

Sensitivity Analysis – VG Properties

- LNAPL properties determined by analysis
- Site specific van Genuchten properties not available. Default VG Properties in the LNAPL Guide based on "typical values". Use of "typical" soil capillary properties contributes to variability in volume estimates
- van Genuchten α is inversely related to capillary fringe height with coarse materials displaying relatively high values
- van Genuchten n is a function of the pore throat distribution with high values indicating greater pore size uniformity

Sensitivity Analysis – VG Properties

Simulation	VG α	VG n	
	m-1		1
Base Case – Site A (Huntley & Beckett, 2002)	7.5	1.9	
Base Case – Site B (Huntley & Beckett, 2002	7.5	1.9	
High (μ+2σ) (coarse materials with uniform sized pore size)	19.8	3.2	/
LOW (μ-3σ) (fine materials with non-uniform pore size)	7.1	1.9	

Sensitivity Analysis – Results

	Base Cas	e	Hi	gh <i>n</i> and α (m ⁻¹) (L)	Low <i>n</i> and α (m ⁻¹) (L)
Site A	13,000			27,800	10,000
Site B	67,000		/	110,000	65,500

LNAPL volume estimate within each contour interval varied by up to a factor greater than 6. Total volume estimates varied by up to a factor of 3 in the above cases.

Responsible, Practical, Innovative and Cost-effective Environmental Solutions.

AQUA

Conclusions

- Interactive LNAPL Guide an interesting tool to assess LNAPL Volume & Mobility and help substantiate exit criteria for LNAPL recovery
- Volume estimates can be sensitive to LNAPL and soil properties and should therefore not be taken as absolute values
- In our cases, mobility estimates of 10⁻²-10⁻¹ m/day suggest plume stability under limited gradient
- This model provides a secondary line of evidence in addition to field evidence (reduced LNAPL thicknesses, limited recovery rates and plume stability) to support site closure

THANK YOU!

www.aquaterre.ca

