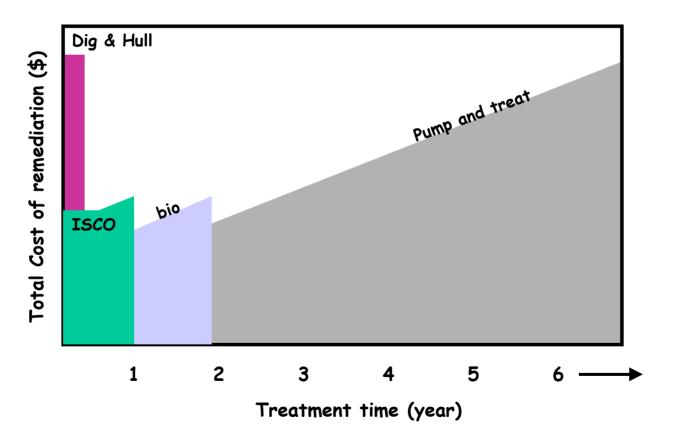
In-situ and Ex-situ Soil and Groundwater Remediation using Chemical Oxidation Technologies

Remtech 2006, Banff, Canada October 13th, 2006

Prepared by Jean Paré, P. Eng. Chemco Inc.


SOLUTIONS AND ENVIRONMENTAL PRODUCTS WATERS - SOILS - AIR

Typical decontamination techniques

- Dig and Hull
- Pump and Treat
- Soil Vapour Extraction under vacuum with or without air/steam injection
- Chemical Oxidation In-situ//Ex-situ
- Monitored Natural Attenuation
- Reactive Barriers
- Thermal degradation

Oxidation Chemistry

Remediation time and cost

Chemical Oxidation In-situ//Ex-situ

- Oxidants are introduced or mixed into the soil and groundwater to attack the organic contaminants
- Chemical oxidation treatments are commonly used in potable and wastewater applications
- Oxidants are non-specific and will react with the targeted contaminants AND with the soil organic content.
- Chemical oxidation reactions involve the transfer of electrons and the breaking of chemical bonds
- Water is the carrier for the oxidants used in chemical oxidation (except for ozone)

Common Chemical Oxidants

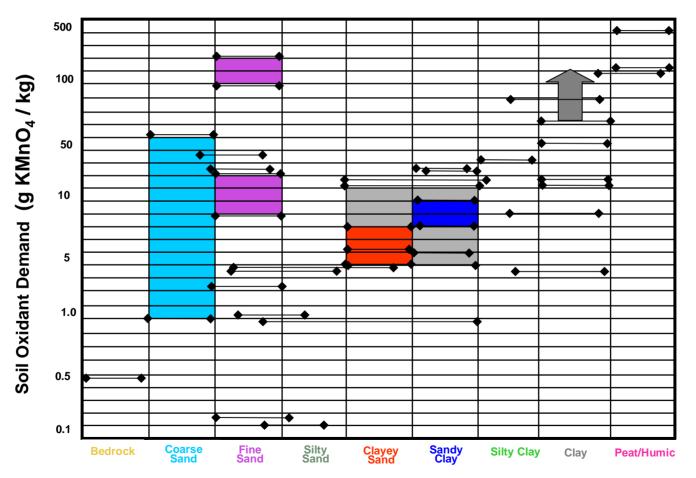
- Potassium or sodium permanganate
- Hydrogen Peroxide alone
- Catalyzed Hydrogen Peroxide
 - Hydrogen Peroxide with iron (regular Fenton reagent reaction)
 - Need to establish acidic conditions (ideal pH between 4 and 6)
 - Modified Fenton Reagent with chelated species (neutral pH)
- Ozone
 - Ozone is a gas and must be produced on site
 - The gas must be injected into the soil
- Persulfate
 - Requires activation to generate free sulfate radicals.
 - Heat, chelated metal, high pH or hydrogen peroxide can be used to activate the persulfate. Activation method can be adapted to site conditions.
- Percarbonate
 - Requires activation to generate free radicals
- NOTES: 1. ALL THESE PRODUCTS REQUIRE ADEQUATE HANDLING
 PRATICES AND SAFETY EQUIPMENT.
 - 2. Chemical oxidation can slow down the biological activity but will NOT sterilize the soil completely (benefit because of lower toxicity after the Chem-Ox)

Oxidant	Potential (V)	Form	Persistence in soil
Fenton Reagent (OH*)	2.8	Liquid	Low 2 to 5 days
Perozone (O ₃ + OH*)	2.8	gas/Liquid	Very Low 20 min to 2 days
Persulfate activé (SO ₄ -)	2.6	Liquid/ suspension	Medium 10 to 30 days
Ozone (O ₃)	2.42 2.07	gas	Very Low 20 min to 2 days
Persulfate (S ₂ O ₈ 2-)	2.01	Liquid/ suspension	Medium 10 to 30 days
Hydrogen Peroxide (H ₂ O ₂)	1.78	Liquid	Low 2 to 5 days
Permanganate (MnO ₄ ⁻)	1.68	Salt/Liquid	High More than 3 month

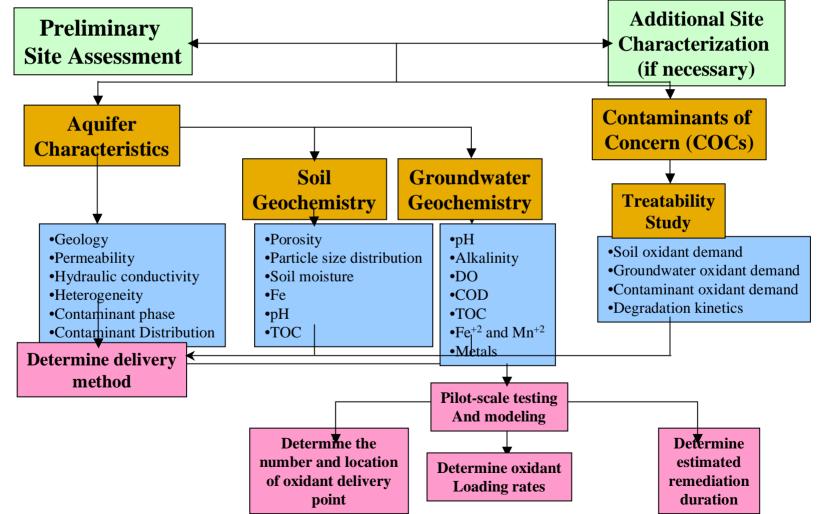
Ref. John Cherry & M. Marley, U. of Waterloo Workshop, 2003

Conditions for Selecting Chemical Oxidation

	Chemical Oxidation Applicability	Limitation / Disadvantages	Possible Alternative Options		
Mobile NAPL	Probably not the best choice	High oxidant requirement (\$)	Liquid Extraction Thermal degradation		
Residual NAPL (10,000's ppm)	Yes, but difficult	High oxidant requirement (\$)	Extraction with air/steam injection Thermal degradation		
High conc. in soil/groudwater (10's – 1,000's ppm)	Yes, good conditions	Normal considerations	Extraction with air/steam injection Bioremediation		
Dissolved plume (< 1 mg/L)	Yes, but could be costly	Higher cost due to SOD	Bioremediation, Reactive barriers		
Source : ITRC 2004 NAPL: Non-Aqueous Phase Liquid					


Soil Oxidant Demand (SOD)

- Any oxidant will react and be consumed by the organic material contained in the soil and by some minerals.
- Bench scale testing and/or pilot testing are recommended for better and more exact SOD evaluation


Soil Oxidant Demand (SOD)

(adapted from Shaw E & I presentation - 2003)

Carus Haz Rem Assessment Process

(Adapted from R. L. Siegrist et al., "Principles and Practices of In Situ Chemical Oxidation Using Permanganate", p. 202.)

Compatibility oxidant/contaminant

Contaminant/Oxydant	MnO ₄	S_2O_8	SO_4^*	Fenton's	Ozone	
Petroleum Hydrocarbon	L	G/E	E	E	E	
Benzene	L	G	G/E	E	E	
Phenols	G	L/G	G/E	E	E^1	
Polycyclic Aromatic	L	G	E	E	E	
Hydrocarbon						
(PAH)						
MTBE	L	L/G	E	G	G	
Chlorinated Ethenes	E	G	E	E	E	
(PCE, TCE, DCE, VC)						
Carbon Tetrachloride	L	G	L/G	L/G	L/G	
Chlorinated Ethanes	L	G	G/E	G/E	G	
(TCA, DCA)						
Polychlorinated Biphenyls	L	L	L	G/E	\mathbf{G}^{1}	
(PCB)						
Energetics (RDX, HMX)	E	G	E	E	E	
L=Low G=Good E=Excellent 1=Perozone						

Geological Considerations

Geological Considerations	MnO ₄	S_2O_8	SO ₄ *	Fenton's	Ozone
Non-consolidated material					
Sand and gravel	E	E	E	E	E
Silty sand	G/E	G	G	L	L
• Mixed	G/E	G/E	G	L	L
Consolidated material					
High flow	E	E	L/G	L/G	L/G
Low Flow	G	G	G	L	L

L=Low G=Good E=Excellent

Hydrogeological considerations

Hydrogeological	MnO ₄	S_2O_8	SO ₄ *	Fenton's	Ozone
considerations					
Saturated Zone	E	E	G	G	G
Non-saturated Zone	G *	L/G	L/G	L/G	G
with groundwater flux:					
• slow	G	G	G	L	L
• fast	G	G	G	G	G

L=Low G=Good E=Excellent * If temporarly flooded.

Geochemical Considerations

Geochemical	MnO ₄	S_2O_8	SO ₄ *	Fenton	Ozone
Considerations					
Presence of carbonates	E	E	G	L	L
High dissolved metal	L	G	E	E	L
content					
High organic matter	L	G	G	L	L
content					

L=Low G=Good E=Excellent

Additional Considerations

Criteria	MnO ₄	S_2O_8	SO ₄ *	Fenton	Ozone
Gas Production	Low	Low	Low	High	High
Heat Production	Low	Low	Low	High	Low
Fugitive Emissions	Low	Low	Low	High	High
Availability	E	E	E	E	G
Ease of handling	G/E *	E	E	G	G
Impact on water quality	Mod.	Mod.	Mod.	Mod.	Low
Patent Restrictions	Low	High	High	High	High
Technological	E	L	G	E	G
Development					
Information availability	G	L	G	G	G
Field trial	G	L	G	G	G
L=Low G=Good E=Excelle	* Sodium				

Additional considerations (2)

- All oxidants can change the oxidation state of metals and thus increase their solubility and mobility
- Metals of particular concern are: chrome, lead, uranium, selenium, vanadium
- In most of these cases, the metals will come back in their reduced state once all of the oxidant has been consumed by the environment
- Impurities contained in the oxidant must be evaluated
- In the case of arsenic, oxidation will help immobilizing the metal by reducing its solubility

Who we are

SOLUTIONS AND ENVIRONMENTAL PRODUCTS WATERS - SOILS - AIR

- Canadian Company founded in 1988
- Production and warehouse facilities in Quebec and throughout Canada vs Strategic Business Alliances
- Sectors of activity
 - Industrial and Municipal Waste Water
 - Contaminated Soil and Groundwater
 - Air, Odours and Atmospheric Emissions
 - Process Water
- Products: coagulants, flocculants, nutrients, preparations of bacterial strains, oxidants, catalysts, oxygen and hydrogen release compounds, odour control agents
- Services: technical support, product supply and sourcing, logistics, laboratories, design, and staff training.

Acknowledgements

- Carus Chemical
- ERM Corporation
- FMC Corporation
- Progressive Engineering & Construction
 Thank you for your attention !
 Have a good day !!!

Contact information: E-mail: jean.pare@chemco-inc.com Tel: 418-953-3480 Web site: www.chemco-inc.com