IMPROVEMENTS IN THE BIOTREATMENT OF SOIL CONTAMINATED BY HEAVY HYDROCARBONS

by Jean Paquin, P. Eng.

Presented at the

REMTECH 2006 Conference

Banff, Alberta

October 12, 2006

Outlook of the presentation

- I. Background
- II. Objectives
- III. Soils treated
- IV. Results, R&D and full-scale
- V. Field snapshots
- vi. General findings

Background

Difficulty for biotreatment in soil to deal with:

- Heavy weathered petroleum hydrocarbons
- Fine grained soils (silt and clay)
- Prior work of Sanexen and of others
- Requirements of two site owners in Montreal (FIPM and Imperial Oil)
- Research with the MCEBR
 (Montreal Center of Excellence for Brownfield Remediation)

Background

 Desire of the FIPM Trust to deal with the site in a socially and environmentally responsible manner

(FIPM or *Fiducie des Installations Pétrochimiques de Montréal*, is responsible for the property of the former Gulf/Kemtech refinery)

- Involvement of the MCEBR (Montreal Centre of Excellence for Brownfield Remediation) to develop state of the art environmental solutions.
- Selection of Sanexen as the organization with the best price and best performance warranty to perform the required decontamination

Objectives

- Improve the performance of biotreatment of soil contaminated with heavy petroleum hydrocarbons
- Reduce soil biotreatment costs by 30%
- Improve knowledge and understanding for this type of treatment
- Better identify constraints and optimal strategies in view of these constraints

Specific objectives

- Improve the microbial flora (quantity and effectiveness)
- Attain a favorable soil temperature at a low cost
- Identify the best amendments for bulking of soil and increased bio-availability of the contaminants
- Identify optimal mechanical handling of the soil
- **Does our frame of thinking make sense?**

Soils treated

- Backfill and native silty-clay soil at the site of the decommissioned fluidized catalytic cracking unit (FCCU) of the Gulf refinery in Montreal-East (new PTT Shell site) (35,000 metric tonnes)
- Backfill and native blue clay soil at the former Texaco refinery in Montreal-East in the area of the visbreaking unit (120,000 metric tonnes)

Soil at the FIPM (formerly Gulf) site

SANEXEN

Soil at the Imperial Oil site (formerly Texaco)

R&D carried out

- Compare alternative/supplemental treatment methods with a standard method of biotreatment (pilot and full-scale)
- Verify respirometry, toxicity and contaminant mineralization in the laboratory
 - Monitor respirometry, temperatures and contaminant degradation in the field

Standard method of biotreatment

- Condition the soil through mechanical mixing with additives to:
 - obtain an optimum water content
 - insure there are enough bio-available N-P-K
 - bulk the soil with a biomass amendment
 - provide heat (10-25 °C > ambient) through aerobic activity
 - adjust the pH for optimal PAH degradation
 - Forced aeration in biopiles with repeated conditioning of the soil as needed

Alternative/supplemental methods tested

- Closed loop recirculation of oxygen with production of ozone for chemical oxidation
- Bioaugmentation
- Use of surfactants
- Alternative/supplemental biomass amendments
- Addition of easily degradable substrates for population increase and production of heat
- Cycling of aerobic/anaerobic conditions

Initial investigation by the MCEBR

- Mandate from PIPM to identify the best biotechnologies and proponents to treat contaminated soil removed for construction of the PTT plant.
- Call for proposals and pilot testing by qualified proponents.
- Pilot tests Autumn and winter of 2003
- Establishment of site specific clean-up criteria based on the best results: - 1300-1500 mg/kg TPH (C₁₀-C₅₀)
 - criteria B (residential) for PAH's
- Selection of three proponents/bidders

Pilot test carried out by Sanexen

- Collection of 10 metric tonnes of soil from the site and testing (MCEBR and Sanexen)
- Conditioning of the soil as per Sanexen's standard method of biotreatment (slide 11)
- Placement of soil into two sealed containers with recirculation of air and oxygen addition as needed
- Reconditioning of soil and continued biotreatment in test A
- Reconditioning of soil and continued treatment with recirculation of O₂ and ozone in test B
- After a total of four months of treatment (2 + 2), sampling and testing of the soil (MCEBR and Sanexen)

Results of the pilot test

(average concentrations)

• Initial concentrations:

Petroleum hydrocarbons (C_{10} - C_{50}):3500 mg/kgPAHs (80% methyl,dm and tm naphtalenes)74 mg/kg

- Concentrations after initial biotreatment
 Petroleum hydrocarbons (C₁₀-C₅₀): 2450 mg/kg
 PAHs 3,1 mg/kg
- Final concentrations Test A (bio) Test B (bio + O_3) C_{10} - C_{50} 1400 1730 PAHs 2,8 4,4

Soil treatment at the FIPM site

Pilot testing of various amendments

- Thirty (30) m³ of soil was conditioned in the standard method for this site.
- Nine (9) piles of 3 m³, each with a passive aeration system, were prepared with different amendments.
- Amendments (microbial consortia, surfactants, composts, growth substrates, bulking agents).
- Treatment over a period of one year.
- Concentrations decreased from 2000 to 1100 mg/kg on average.
- No recipe yielded a significant benefit over the control.

Conditioned soil

Biofilters and an adsorption filter for the treatment of air

Connections to the air treatment system

Blower to circulate air and increase temperature above the dew point

Sludge box and bioreactor for seeding of soil

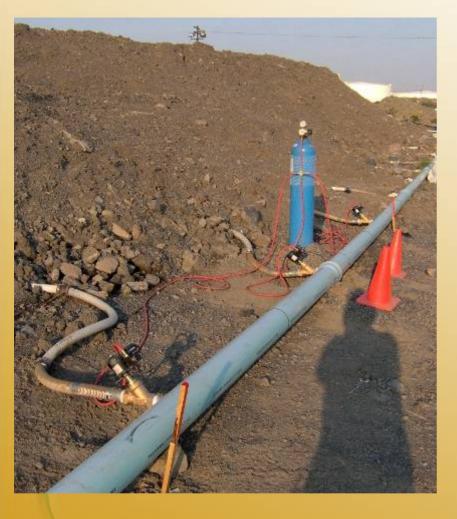
Biomass amendment for bulking of soil

Soil after conditioning with amendments and mechanical mixing

Bulk solution of 11% ethanol

Monitoring of quantity added

Pumping to well points in the biopile


Testing for O₂, CO₂, CH₄ and temperature

Laboratory biotreatability testing

- As part of the research program with MCEBR, soils that received different amendments were tested at BRI for their ability to degrade added hexadecane and naphtalene
- Tests performed over a period of 28 to 39 days on microcosms with 20 g of soil
- There was an abundant microbial population in all soils (2-7 x 10⁷ CFU/g)
- No recipe appeared to provide an advantage at this scale over the untreated soil

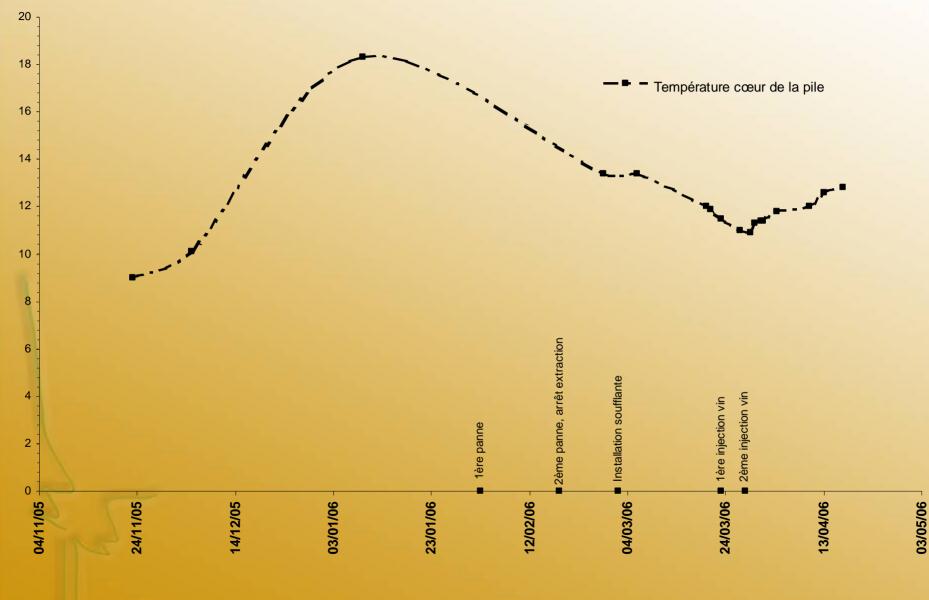
Cycling of air circulation in sections of a biopile to induce occasional anoxic conditions

Automated valve

Well points for gas and T monitoring

Reconditioning of soil in November 2005

Soil at 25 °C vs ambient T of – 5 °C


Monitoring of air drawn from the soil

Operation throughout the winter of 2005-2006

°C

SANEXEN

Overall results of the treatment of the 20 000 m³ of soil

Parameter Initial soils Treated soils % elimination (mg/kg) (mg/kg)

 PH (C₁₀-C₅₀)
 2910
 1033
 64,5

 PAH's
 58,5
 2,6
 95,6

Note: The concentrations of PH $(C_{10}-C_{50})$ and of PAH's continued to decrease below these treated soil concentrations after placement of the soils in the K1 and K8 berms

Loading of treated soil

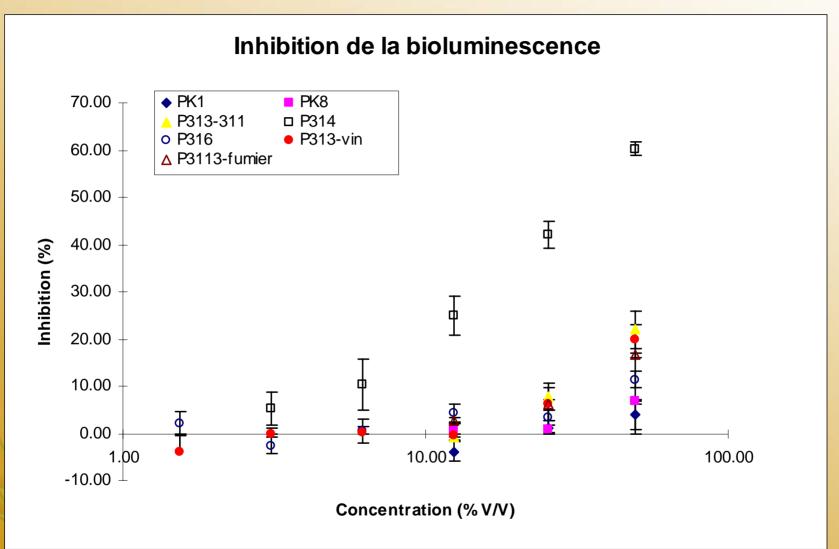
Delivery of the soil at the K-1 site for construction of a berm for a visual barrier

Addition of a top soil

Trees for revegetation

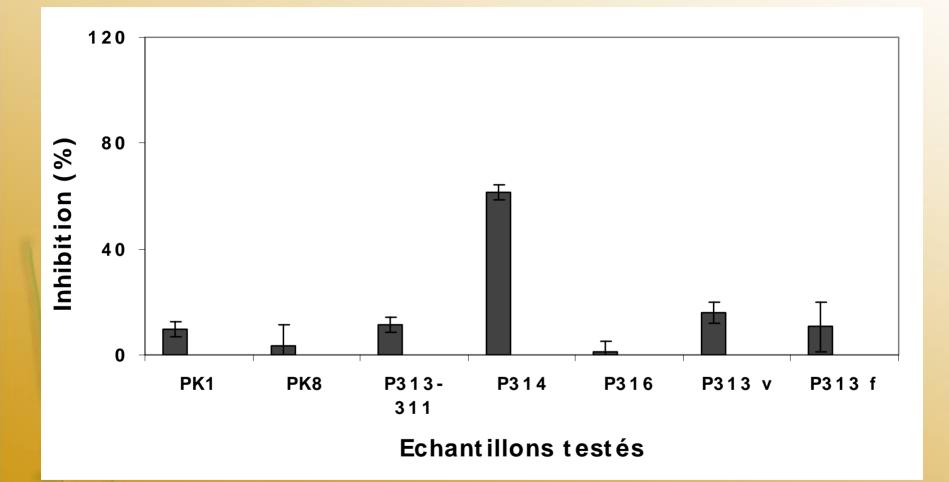
K-8 berm along a brownfield site

K-1 berm along the Metropolitain highway

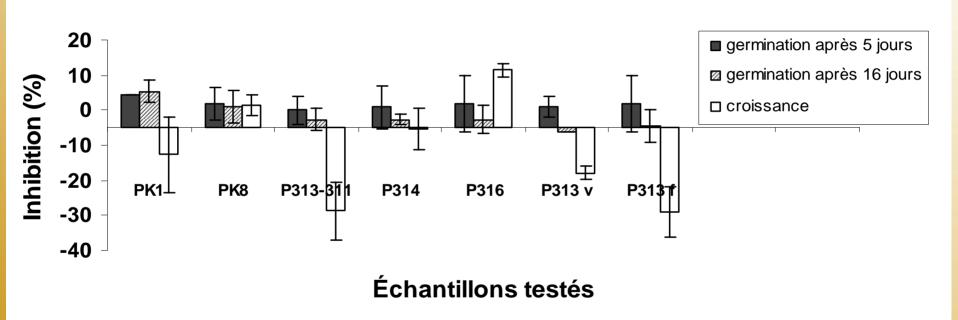

Toxicity testing

- As part of the research project with MCEBR, soil at various stages of the treatment was sampled and tested by the Biotechnology Research Institute (BRI) of the NRC.
- Soil sampled and tested

Untreated soil	314
Soil from piles 311 & 313	311-313
Soil with ethanol addition	313v
Soil with more bulking agent	313f
Treated soil in K1 berm	K1
Treated soil in K8 berm	K8
Background (soil out of site)	316


Toxicity of the soils on the bacteria Vibrio fischeri

The percentage of inhibition is calculated in reference to a salt water sample. The average values with the errors for 3 replicates are presented.


Toxicity of the soils on the germination of lettuce

Percentage of inhibition calculated with respect to a reference (commercial silica) Average values with typical errors for 3 replicates are presented

Toxicity of the soils on the germination and growth of barley

Percentage of inhibition calculated with respect to a reference (silica sand) Average values with typical errors for 3 replicates are presented

Aerial view of the MFI Imperial Oil site in Montreal

A look at the soil slated for biotreatment

Processing of 120,000 metric tonnes of soil now undergoing at the site

Close-up on the clayey soil **SANEXEN**

Visiting Canada geese

16

A bioreactor is used to grow an indigenous microbial population

Daily bug food

The foam indicates when a batch is ready

Aeration and mixing

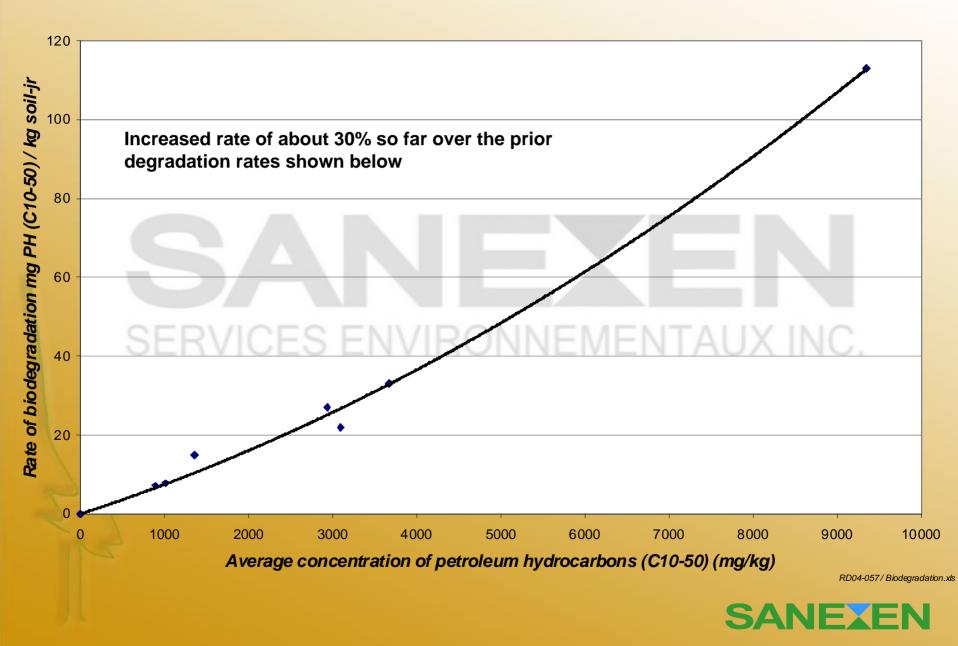
Pumping of the fluid to the soil

Application of the solution to the soil

Transportation to the conditioning pad

Treated soil returned to the site SANEXEN

Segregation and loading


Cellulosic amendment to improve the structure of the soil

Results

- Increase of approximately 10 fold on average in microbial population after soil conditioning.
- Average rates of mineralization of 46 mg/kg C₁₀-C₅₀ -day at an average C₁₀-C₅₀ concentration of 4000 mg/kg and at an average temperature of 25 °C, based on 80 samples.
- Soil treated and declassified at a lower cost and more quickly with the amendments and the addition of indigenous microorganisms used

Rate of biodegradation of petroleum hydrocarbons (C10-50) in soils in function of contamination levels for diesel and heavier products

Findings on the methods tested to improve biotreatment results

- Use of ozone
- Exogenous consortia (bio-augmentation) No benefit
- Surfactants
- Cycling of aerobic/anoxic conditions
- Use of a growth substrate
- Use of biomass bulking agents
- Generation of heat
- Bioreactor for population increase

*under the conditions tested

No benefit No benefit* Beneficial Beneficial Beneficial

No benefit*

No benefit*

Conclusions

- The biotreatment of heavy hydrocarbons in fine grained soils is not a lost cause
- The techniques used allowed to reduce biotreatment costs by approximately 25%
- Petroleum hydrocarbon concentrations do not tell the whole story
- Research is continuing to gather more data

Special thanks to

La Fiducie des Installations pétrochimiques de Montréal (the Montreal Trust for Petrochemical Installations)

(the Montreal Center of Excellence for Brownfield Remediation)

Imperial Oil

The Biotechnology Research Institute of the National Research Council of Canada

IMPROVEMENTS IN THE BIOTREATMENT OF SOIL CONTAMINATED BY HEAVY HYDROCARBONS

Questions?

