Modernized Approach for the Remediation of **Salt Impacted Soils**

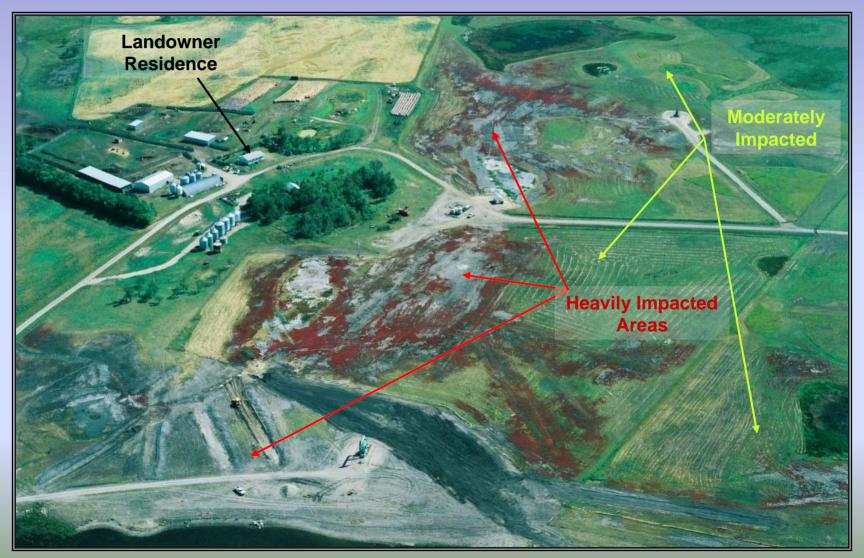
Presenters:

Anthony Knafla (Equilibrium Environmental Inc.) Darren Stokes (Talisman Energy Inc.)

Introduction

- PURPOSE OF PRESENTATION
 - share knowledge gained from two years of study and resources dedicated towards:
 - understanding factors limiting the achievement of equivalent capability for a salt & boron impacted site
 - Evaluating the effectiveness of a longer-term remediation strategy
 - Knowledge gained may be of value to industry in dealing with other large produced water impacted sites

ACKNOWLEDGEMENTS


- NAL Oil and Gas Trust (Cost Sharing Partner)
- Matrix Solutions Inc. (Groundwater, pumping tests)
- Strata Environmental (Weed Control, Contractor Management, Soil Investigations)
- Odyssey Environmental (Species Identification)

Brief Site History

- Two spill events in the late 1960's that released an unknown large quantity of produced fluids
- Salt water flowed into low lying areas these areas are now unable to sustain cereal or forage crops
- Numerous historical attempts at remediation using conventional methods were unsuccessful (e.g., gypsum amendments)
- large stands of foxtail barley developed in heavily and moderately impacted areas - hindrance to livestock pasturing
- Impact represents a significant source of environmental liability in the millions using a dig and dump approach
- As a consequence, the problem must be studied to establish the most cost effective approach to reducing environmental liability

Air Photo of Impacted Area

- Close proximity to landowner residence
- Greater than 100 acres of impact; 30 acres of heavy impact
- Depth of impact frequently extends to 4 m

Problem Formulation

- Large area
 - Evaluate effectiveness of longer term remediation and interim risk management
- Multiple toxic stressors
 - Salt ions (electrical conductivity values <50 dS/m)
 - Surface soil SAR values of up to 20
 - Boron (concentrations < 20 mg/kg)</p>
- Close proximity of landowner residence
 - Chloride impacts in a well not use as potable water
- Weed control required in moderately impacted areas
- Shallow groundwater table (discharge area)
- Limited excavation is not feasible since resalinization of backfilled soils will occur due to shallow groundwater and soil texture

End Goals

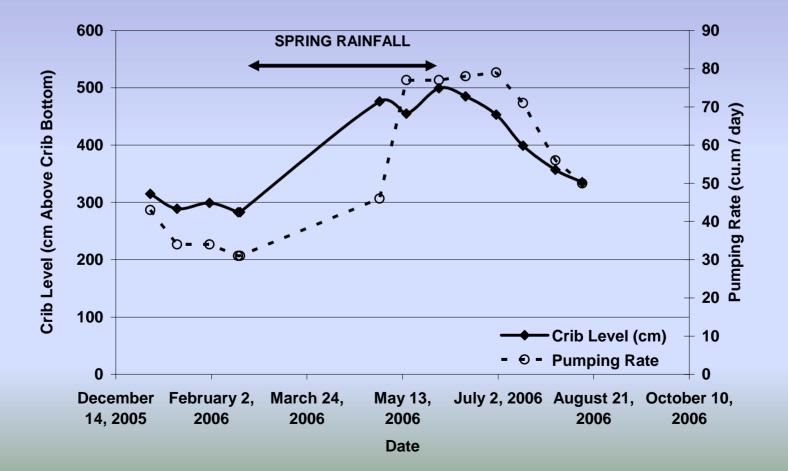
- Stabilize plume to prevent the spreading of impacts
- No unacceptable risks to the health of humans and environment
 - Human Health and Ecological Risk Assessment
- Achieve Equivalent Land Capability
 - Defined using risk assessment
 - <20% reduction in seed germination for >50% of cultivar and hay/pasture species typical to the area compared to background
 - < 50% reduction in plant yield for >50% of species
 - Site-Specific definition accepted by SIR (Sept 6, 2003)
 - Quantitative endpoints
 - establishing plant growth to the above targets
 - Estimated that these plant endpoints are equivalent to soil salinity EC values of 4 dS/m (topsoil) and 10 dS/m (shallow subsoil) – relative to background EC values

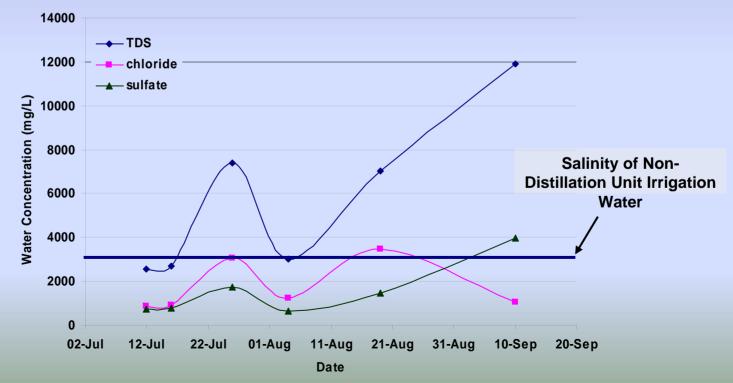
Methods

- Interim Risk Management
 - Fence area to prevent cattle foraging in the impacted area
 - Notify landowner of impacts and potential risks
- Tile Remediation System
 - Extensive 5 km of tile
 - Disposal pipeline to nearby battery
 - Automated control of leachate water pumping
- Pilot Distillation Unit
 - Test effectiveness at processing leachate water into irrigation quality water and concentrating waste stream
- Research Study to gauge soil remediation
 - Boron and salt removal through leaching and plant uptake

Tile Remediation System (Automated Pumping System)

- Purpose to marginalize groundwater fluctuations
- Pressure transducers measuring culvert water levels
- Variable speed pumps linked to water levels
- Flow meters linked to chemical dosing pump




Tile Remediation System (Automated Pumping System)

- Results
 - Pumping system increased disposal rates of leachate water and marginalized culvert (and groundwater) levels after heavy rainfalls

Tile Remediation System (Automated Pumping System)

- Results and Implications for 2007 Work
 - Seasonal change to salinity levels in culvert
 - Suggests the possibility of collection during spring months and re-use as irrigation water in hot dry summer months
 - More environmentally responsible approach
 - Required a very controlled situation
 - Use of lower salinity water (< 3,000 ppm TDS) approved by SIR
 - Can be implemented as part of the automatic system

Pilot Distillation Unit

- Vacuum distillation
- Mobile trailer mounted and suitable for remote areas
- "silent" genset initial rented unit had significant noise issues
- Satellite communication system for contractor notification
- Automated (chemical dosing, descaling cycles)
- Heat recovery systems 60% of waste heat recaptured
- Trucked water when production lost due to scale formation
- Security cameras required to offset vandalism activity
- Can produce between 150 and 5,000 gal/day

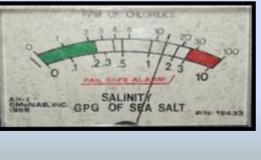
Scale Control

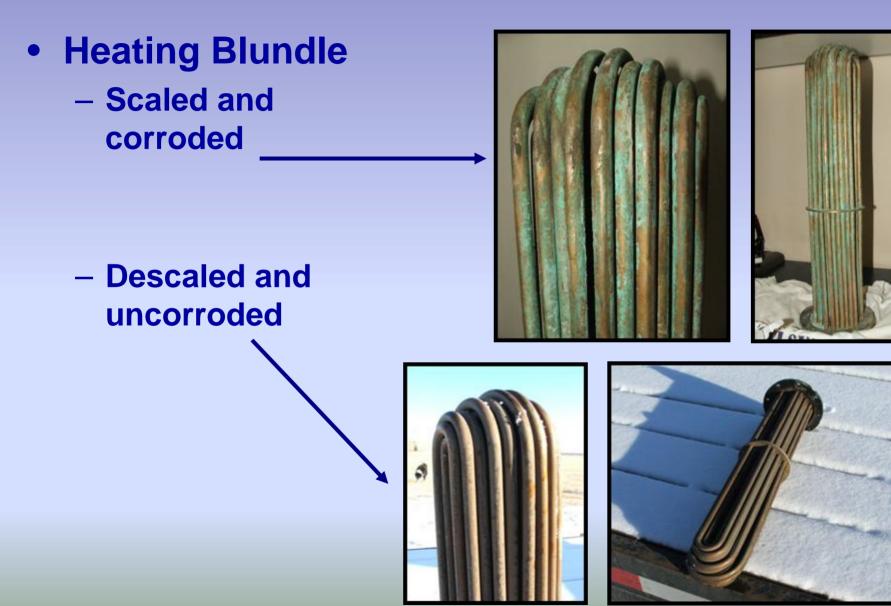
- Net continues water production was < 30% of capacity and maximum capacity was 50%
 - Due to time for sulfate descaling carbonate scale easily removed
- Various scale control measures examined:
 - Chemicals more than 10 O&G products tested from Canada, USA, UK
 - Scale Inhibitors
 - » Ineffective alone
 - Gypsum Scale Removers
 - » High doses required and often caused other problems
 - Carbonate Scale Removers
 - » Easiest to control for the water chemistry processed
 - » Caused significant corrosion (acid-based)
 - Coatings
 - Teflon based to heating bundle
 - » Reduced rate of descaling compared to bare alloy metal surface
 - » Significantly reduced corrosion rate
 - Water softening salts
 - decreased the activity coefficients for sulfate- and carbonate-based scale
 - custom soft water mixture
 - Various combinations thereof were tested at variable doses

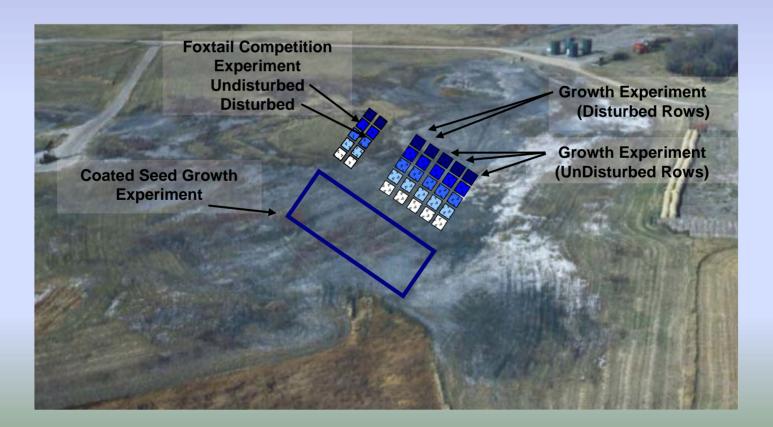
Scale Control

• Chemically-Related Problems

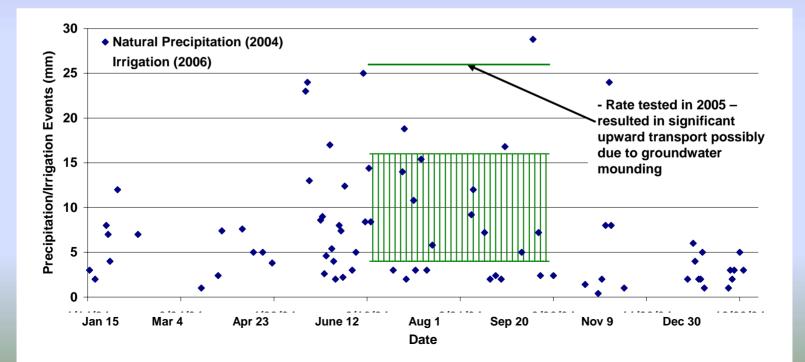
- Pipe corrosion
- Foam buildup and carryover
- -I Orifice compromised
- Odours (xylenes-related)



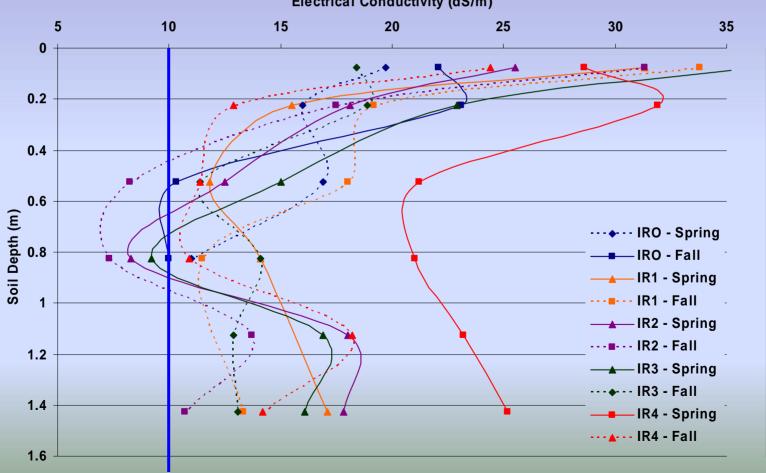




Scale Control

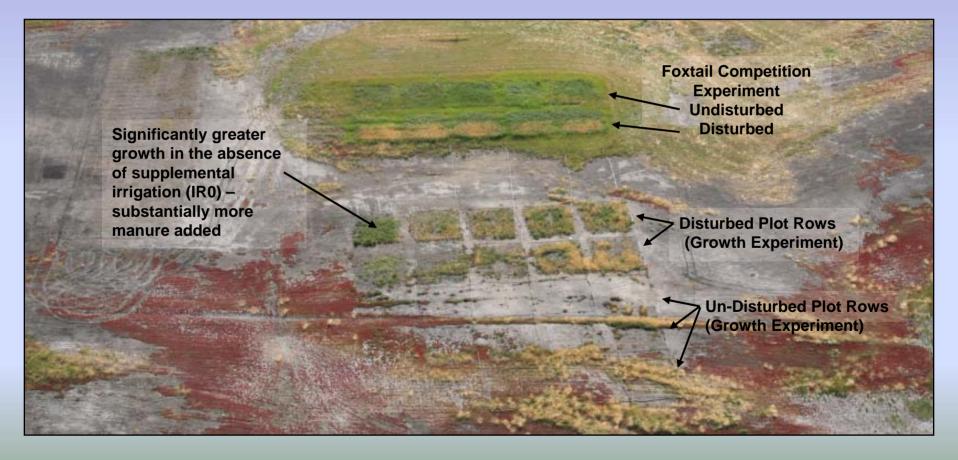

Research Test Plots

- Three Experiments (test rows composed of 5 x 20'x20' plots)
 - Growth establishment (plots built in 2004 resalinized for 2005)
 - Foxtail competition experiment and boron phytoremediation
 - Dr. Greenburg's generic treated seeds
- Distillation unit 500 GPD unit
 - 100% production provides water to irrigate test rows every 3rd day


Research Test Plots - Irrigation

Irrigation Rate Label	Irrigation (mm/ event)	Total # of Irrigation Events	Equivalent Water Usage	Equivalent Precipitation Event Based on Historical Carlyle Norms (1971 to 2000)	
IR0	0	0	0%	No rainfall	
IR1	4	28	6%	Light spring shower	
IR2	8	28	13%	Moderate spring shower	
IR1 + IR2		28	19%	Light plus moderate (26 events/year)	
IR3	16	28	39%	Moderately large (10 events/year)	
IR4	14	28	33%	Moderately large (10 events/year)	

Research Test Plots - Soil Salinity


- Lower irrigation rates associated with upward transport
- Higher irrigation rates associated with downward leaching
- Undisturbed plots showed significantly less leaching (not shown)
- end goals reached in 1 year (< 10 dS/m) for certain disturbed heavy irrigation test plots (not shown - initial EC values of 20 dS/m)

Electrical Conductivity (dS/m)

Research Test Plots - Plants

- Growth established in areas where no species have emerged (with exception of foxtail and red samphire) over a 40 year period
- Out-competed foxtail barley growth in areas where historical plant growth has been observed

Research Test Plots - Plant Growth

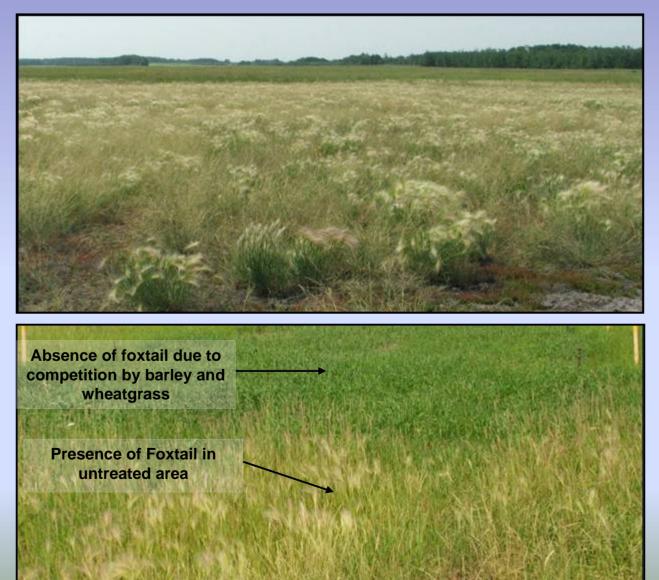
- Two mixes native and forage
- Seeding rate 600 lbs/acre
- Concept of toxicology no two seeds are alike!
- Increases the probability that natural genetic salt tolerance variations will establish

Native Seed Bed	Species in Mix A*	Species in Mix B*	
Foxtail barley	Nuttall's alkali grass	Forage barley	
Red samphire	Slender wheatgrass	Annual ryegrass	
Sea milkwort	Tall wheatgrass	NewHy wheatgrass	
Seaside arrowgrass	Tall fescue	Orchard grass	
		Alfalfa	

Research Plots - Growth Experiment

Before

After


Control Versus Treated

Barley "Yellowing"

Research Plots Foxtail Control and Boron Phytoremediation

Research Plots Foxtail Control and Boron Phytoremediation

- Estimates of root length for identifying soil depth interval for the calculation of uptake factors
- Viable seed production seeds also analyzed for uptake rates

Root Length Approx. 15 cm

Research Plots - Boron Phytoremediation

- Boron soil concentrations ranged from 2 to 9.2 mg/kg (HWS)
- No clear trends between boron concentrations in soil and plants
 - Significant difference in uptake between barley plant parts
 - Significant difference in uptake between barley and alfalfa
 - Duplicate plant sample concentrations varied by < 25%

	Average Boron Plant Concentration (mg/kg dw)	% StDev on Mean	Average Boron BCF	% StDev on Mean
Barley Stem	5.7	31%	1.0	33%
Barley Seed	1.2	53%	0.2	46%
Alfalfa	109	15%	19.9	17%

- Photoremediation Mass Removal Estimate
 - Based on a root depth of 30 cm (boron exceedence range), dry yield for alfalfa of 0.73 kg/m², average boron HWS conc. of 5.5 mg/kg, and average BCF of 19.9, estimated 3.2% of HWS boron removed per crop yield
 - Literature data suggests greater proportional uptake at lower HWS boron soil concentrations (e.g., BCF values of > 100)
 - Estimated 10 years to phytoremediate (two crops per year)
 - Irrigation may substantially increase yield and uptake
- No unacceptable livestock risks predicted up to HWS boron of 9 mg/kg
- No risks for humans consuming barley seeds or other plants tested

Conclusions

Tile Pumping System

- Effective at reducing groundwater levels
- Still issues with spring rainfall (9 inches)
- Potential use of low leachate water for irrigation

Pilot Distillation Unit

- Failed to meet production goals
- For now, application will be restricted to low background EC sites (low sulfate) where high production rates can be obtained

Research Plots

- Some disturbed and amended plots reached regulatory objectives and other plots appear to be able to reach objectives in under five years
- Irrigation increases the rate of salt leaching
- Foxtail barley growth can be inhibited competitively by the growth of other species in disturbed and amended plots
- High seeding rate is more effective
- Boron phytoremediation potential exists should evaluate uptake rate simultaneously with single species plots and yield measurements for a more accurate estimate