

Characterization & Assessment of LNAPL Mobility in Fractured Soils Emma Kirsh, B.Sc., P.Geol & Douglas Sweeney, M.Sc, P.Eng. SEACOR Environmental Inc.

Environmental Assessments

- Stage 1 and 2 Preliminary Site Investigations in 2000 and additional since
- Total of 76 monitor wells on site and off site surrounding properties
- On site & NW off site soil BTEX, VPH > standards
- SE off site soil B, VPH > standards
 - Groundwater BTEX, VH_w, VPH, EPH_w, LEPH_w > standards

Investigation Methodology

Objectives Detailed site characterization of soil and groundwater Develop LNAPL mobility assessment based on site characterization analysis Eventually develop remedial options based on site characterization analysis and **LNAPL** mobility assessment

Investigation Methodology

Ξ

s p fl

C

n

e

ľ

Investigation Methodology

Test Pit Location	Depth (m)	% Fines - % Sand - % Gravel	Atterberg Limits	Dry Bulk Density (ρb) (kg/m3)	Water Content (%)	Porosity (-)
TP102	2.5 - 2.6	100 - 0 - 0				
TP102	2.8 - 3.3	89 - 11 - 0				
TP102	3.5 - 3.6	97 - 1 - 2				
TP101 - East side	2.0 - 2.5	100 - 0 - 0		1536	23.5	0.43
TP101 - East side	3.0 - 3.5	99 - 1 -0	CL - Low plasticity clay	1397	31.1	0.48
TP101 - West side	3.0 - 3.5	100 - 0 - 0		1343	32.7	0.50
TP101 - West side	4.0 - 4.2	96 - 2 - 2		1468	28.0	0.46
TP102 - South side	3.0 - 3.2	100 - 0 - 0		1279	37.4	0.53
TP102 - South side	4.0 - 4.2	100 - 0 - 0		1569	23.5	0.42
	0	eometric weans		1428	28.9	0.47
Additional Constants:	Value:	Units:				

Site Characterization

- Stratigraphy thin horizontal bedded clayey silt with occasional sand laminations between silt beds
- Soil oxidized to maximum testpit depth
- Variable clay content maximum % at 2.0-3.5 m, then decreasing with depth
- Atterberg limits CL low plastic clay and even though clay content does not approach 50% even small clay content strong governing factor for key soil properties

Site Characterization

Hydrogeological parameters from ongoing monitoring events Horizontal flow in 2 main directions Southeast from site towards creek and northwest towards road-some site mounding component and utilities/infrastructure control on movement

Vertical flow – variable downward depending on season/proximity to creek, 0-0.6 m/m, average 0.01 m/m

TABLE 5: SUMMARY OF HYDRAULIC CONDUCTIVITY TESTINGMonitor WellScreen Interval (mbgs)Soil TypeHydraulicIntri ConductivityBH26S5.5 - 6.4Silt1.1E-071.8	insic ∍ability ∩²) E-14
Monitor WellScreen Interval (mbgs)Soil TypeHydraulic ConductivityIntri Permet (m/s)BH26S5.5 - 6.4Silt1.1E-071.8	insic ∍ability ∩²) E-14
Monitor WellOctober Interval (mbgs)Soil TypeConductivity (m/s)Perme (nBH26S5.5 - 6.4Silt1.1E-071.8	eability n²) E-14
(m/s) (m/s) (n BH26S 5.5 - 6.4 Silt 1.1E-07 1.8	n²) E-14
BH26S 5.5 - 6.4 Silt 1.1E-07 1.8	E-14
BH26DR 8.2 - 9.1 Silt 2.6E-08 4.2	E-15
BH27S 4.6 - 5.5 Sand 6.7E-07 1.1	E-13
BH27D 7.3 - 8.2 Sand 2.5E-07 4.0	E-14
BH32S 3.4 - 4.3 Silt 1.4E-06 2.2	E-13
BH32D 6.1 - 7.0 Silt 3.6E-09 5.8	E-16
BH50S 1.5 - 2.4 Silt 3.2E-07 5.1	E-14
BH50D 7.3 - 7.9 Silt 2.0E-07 3.2	E-14
BH52S 3.4 - 4.3 Silt 1.2E-05 1.9	E-12
BH52M 6.1 - 7.0 Sand 1.1E-06 1.8	E-13
BH52D 8.8 - 9.4 Sand 5.2E-07 8.3	E-14
BH53D 6.1 - 6.9 Silt 4.9E-07 7.8	E-14
Geometric mean for wells in upper 6 m of soil 8.3E-07 1.3	E-13
Geometric mean for wells in soil below 6 m depth 1.4E-07 2.3	E-14

Site Characterization MATRIX POROSITY

TABLE 6: SUMMARY OF FRACTURE APERTURES & POROSITIES						
Fracture Flow System	Fracture Spacing	Average Fracture Spacing	Mean Hydraulic Conductivity	Aperature Width	Fracture Porosity	
Oystein		(1/m)	(m/s)	(m)	(%)	
Horizontal	min	9	8.E-07	3.0E-05	0.03	
Fracture	max	17	8.E-07	2.5E-05	0.04	
Flow	average	14	8.E-07	2.6E-05	0.04	
Cubic	min	9	8.E-07	3.8E-05	0.1	
Fracture	Пах	31	8.E-07	2.5E-05	0.2	
Flow	average	15	8.E-07	3.2E-05	0.1	

system

- equation modification for flow system dominated by horizontal bedding or cubic fractures
- mean K and field fracture spacing
- Horizontal system 0.03-0.04%
- Cubic system 0.1-0.2%

Nature & Extent of

Dist 2. Croundwater 8 Dreduct Elevations Bill

Nature & Extent of **Hydrocarbon** Impacts **Residual phase – 186 soil hydrocarbon** analyses **TOTAL PETROLEUM HYDROCARBONS** 89 % soil TPH < 100 mg/kg (165) 21 % soil TPH ~ 122-2225 mg/kg (21) Oil saturations – Maximum 0.8 %, majority <0.2 %

Fracture flow porosity ≈ Volumetric oil content EAC@R (0.02-0.4 %)

Nature & Extent of

TABLE 10: SUMMARY OF GROUNDWATER CHEMISTRY RESULTS WITH DISSOLVED TPH > 40,000 ug/L						
Sample ID	Date	VHw	LEPHw	HEPHw	TPH	
BH 2D	25-Aug-00	36000	17900	1000	54900	
BH 2D	24-Oct-00	44000	5000	<1000	49000	
BH 3	24-Oct-00	51000	4700	<1000	55700	
BH 7	26-Jan-01	43000	3500	<1000	46500	
BH 8	26-Jan-01	46000	3600	<1000	49600	
BH 9	26-Jan-01	46000	2000	<1000	48000	
BH 12	26-Jan-01	<mark>4300</mark>			129100	
BH 14	26-Jan-01	<mark>5400</mark>	>/0,000		60000	
BH 15	26-Jan-01	<mark>4900</mark>	~/		51100	
BH 23	3-Mar-05	<mark>2870</mark>	μឭ/∟	•	49300	
BH 23	3-Mar-05	29100	19300	<1000	48400	
BH 50D	6-Aug-02	421000	39400	1000	461400	
BH 50M	23-Jul-02	289000	19200	<1000	308200	
BH 50M	6-Aug-02	7060000	7200	<1000	7067200	
BH 52M	23-Jul-02	114000	10000	<1000	124000	
BH 52M	6-Aug-02	239000	22300	1000	262300	
BH 52S	23-Jul-02	286000	18500	<1000	304500	
BH 52S	6-Aug-02	110000	19200	<1000	129200	
BH 72	30-Apr-04	41000	6380	<1000	47380	

Conceptual Migration Model

TABLE 11: SUMMARY OF GROUNDWATER TRAVEL	TIME CALCUL	ATIONS
---	-------------	--------

LNAPL Migration Model	Hydraulic Conductivity	Migration Model Effective Porosity	Gradient	Average Linear Groundwater Velocity	Travel Time	Travel Distance
	(m/s)	-	(m/m)	(m/yr)	(years)	(m)
Matrix Flow	8E-07	0.3	0.003	0.25	50	13
Cubic Fracture Flow	8E-07	0.002	0.003	38	50	1892
Horizontal Fracture Flow	8E-07	0.0004	0.003	189	50	9461
Cubic Fracture Flow	8E-07	0.002	0.003	38	3	121
Horizontal Fracture Flow	8E-07	0.0004	0.003	189	0.6	120
minimal mixing acquiring					CT	LOOD

minimal mixing occurring

Soil-Water Characteristic Curve for Clayey Silt Matrix

ENVIRONMENTAL INC

С.

LNAPL Mobility Assessment Fluid Retention in Fractured Soil

Dr. Mendoza (1992) derived constitutive relationships for fluid flow and migration in fractured geologic media **Based on physical principles** Invasion percolation theory Inlet accessibility & fluid trapping criteria Developed a numerical model with a log normal fracture aperture distribution and a log aperture variance of 1 Results apply for any fractured soil retention curve with known geometric mean aperture

Critical assumption of aperture log normal distribution

LNAPL Mobility Assessment

Soil-Water Theoretical Curve for Fractured Soil

TNIADT Mabelety A geogeneout

Oil Saturations (%)

LNAPL Mobility Assessment

 LNAPL behavior/observations
Dissolved plume stability
Theoretical Mobility Assessment using API Tools

LNAPL Mobility Assessment

7 monitor well locations single observation – no new wells with LNAPL down gradient

- Mann-Kendall statistical trend test
 - 36 wells on and off site with minimun sampling events for analysis
 - Shallow, mid-level and deep wells
- Stability results:

13 diminishing plume trend (on & off)

- **22** stable plume trend (on & off)
- 1 expanding plume trend (off)

Supporting LNAPL plume stability

LNAPL Mobility Assessment **Macro Scale Mobility** API modeling with developed moisture retention curve, fracture porosity and gasoline properties **V** LNAPL $\approx 5 \times 10^{-4}$ m/day **VASTM** de minimus $\approx 9 \ge 10^{-4}$ m/day **Micro Scale Mobility** Local displacement head – based on air entry value (≈ 0.3 m) and LNAPL **properties (Brooks - Corey) H** calculated ≈ 0.65 m **H** site maximum observed ≈ 0.5 m **Macro/micro scale suggest LNAPL no longer mobile**

Going Forward

- Now established network allowing key monitoring points for trend observation – plume center of mass evaluation
- Future implications of low water table and LNAPL drainage extended drawdown/pump tests
- Coring and UV light fluorescence for field LNAPL saturation verification
- Risk Assessment and Remediation

