

Applying Principles of Measurement Uncertainty (MU) to Remediation Monitoring

Phil Heaton, P.Chem. Maxxam Analytics Inc.

Phil.Heaton@maxxamanalytics.com

Abstract

Analytical data is frequently used to monitor remediation projects. Response to rémediation techniques is measured by plotting decreasing contaminant concentrations over extended periods of time. In some cases, end points are predicted based on extrapolation of analytical data to predict target concentrations or theoretical endpoints. The accuracy of the estimates of remediation endpoints is predicated on the quality and quantity of data used to prepare the extrapolation. Measurement uncertainty (MU) can contribute to the overall quality of the data as well as the accuracy of the estimates of remedial endpoints. Measurement uncertainty can be estimated for all analytical parameters by using replicate data and statistical techniques. Quantification of analytical measurement uncertainty has been regulated in Canadian environmental laboratories since 2003. This presentation will discuss extending the concept of measurement uncertainty to include field replicates and multiple sampling events. Inclusion of these variables provides options for applying measurement uncertainty boundaries or confidence limits to estimates of remediation effectiveness and prediction of remediation endpoints. The paper includes descriptions of the statistical techniques and how they can be applied to remediation projects. The paper will also include a discussion and examples of measurement uncertainty components such as accuracy, repeatability, reproducibility and confidence intervals.

Outline

- What is Measurement Uncertainty (MU)?
- Evolution of MU within Canadian Environmental Laboratories
- Reporting and interpretation of MU
- Analytical measurements in remediation monitoring
- Impact of MU on the decision process
- Components of MU
- Increasing confidence
- Field impacts on measurements examples
- Expanding MU to include field duplicates
- "Fit For Purpose"
- Summary

What is Measurement Uncertainty and how is it applied?

- Measurement uncertainty (MU) acknowledges that no measurements can be perfect.
- MU is a parameter that describes the expected range of the combined errors.
- MU associated with remediation monitoring is critical for process control and prediction of end-points.
- MU associated with compliance monitoring measurements is critical for risk assessment and regulatory compliance.

ROMMENTAL SERVICES

Evolution of Measurement Uncertainty in Canada

- Canadian environmental laboratories are accredited to international standard ISO 17025.
 - ISO17025: General Requirements for the Competence of Testing and Calibration Laboratories
- ISO 17025 includes a requirement for the ability to report MU.
- Several approaches exist for the estimation of MU.
 - Statistical approaches are the most common and are usually defensible.
- Audits that included MU began in 2002 and became mandatory in 2003.

Ma

Reporting and Interpretation of Measurement Uncertainty

Maxxam ID		720977			
Sampling Date		02/02/2005			
	Units	Sample #1	MU	DL	QC Batch

Nutrients					
Total Ammonia (N)	mg/L	12.2	+/- 1.2	0.01	688392
Total Kjeldahl Nitrogen	mg/L	-23.1	+/- 3.2	0.05	688391
Total Phosphate (P)	mg/L	2.91	+/- 0.25	0.003	689719

Applying Analytical Measurements to Remediation Projects

- Analytical measurements are required to monitor the performance of remediation projects
- Typically the expectation is that contamination will decrease over time.
- In some cases increasing concentrations are desired (i.e. recovery wells or vapour monitoring)

Example Decreasing Contamination

Max

Analytical measurements are required to develop models and understand behavior

Max

ENVIRONMENTAL SERVICES Max Analyti

"All models are wrong... some are useful."

-George Box-

CE

Impact of Measurement Uncertainty

Impact of Measurement Uncertainty (MU) Remediation Monitoring

CE

Impact of Measurement Uncertainty

(they the

Data Set with MU Error Bars

ENVIRONMENTAL SERVICES Maxie Maxie Maxie

Determining Measurement Uncertainty

DRIVEN BY SERVICE AND SCIENCE.

Calculating MU

 Combined Uncertainty (u_c) is calculated by combining all of the uncertainty sources into a single value

$$u_c = \sqrt{\left(u_{precision}\right)^2 + \left(u_{bias}\right)^2}$$

 Expanded Uncertainty (U) utilizes a coverage factor, k = 2, to provide a confidence of 95%.

$$U = 2x_{\mathcal{U}_c}$$

Accuracy

 Accuracy refers to the variation of experimental data to a known or consensus value

Precision

• Precision refers to the amount of scatter associated with a data set

Increasing Confidence

• The most common confidence levels are 90% and 95%.

SERVI

 $x \pm z^*$

 The general formula used to describe confidence intervals is shown in the equation below:

> Where $\bar{\mathbf{x}}$ equals the mean value found over n observations. σ represents the standard deviation of the data over the long run. z^* is the standardized normal value and can be found in tables or more often is calculated by computer software.

n = *number* of samples

Implies that we can increase confidence by increasing the number of samples collected

Examples of Measurement Uncertainty in Environmental Monitoring

Impact of # of data points on confidence interval

Effect of turbidity on PAH values

(From MacFarlane, et al., 1992)

High sample turbidity results in artificially high PAH concentrations, while low-flow samples represent the true mobile contaminant load.

From: Low-Flow Ground Water Sampling: Theory to Application, David Kaminski, QED Environmental Systems Inc.

DRIVEN BY SERVICE AND SCIENCE

Effect of turbidity on PAH values

(From MacFarlane, et al., 1992)

Sampling method	Low-flow pump	Open-top bailer	Open-top bailer
Sample type and Turbidity	Unfiltered 0.5 NTU	Unfiltered > 100 NTU	Filtered, 0.45µ 0.6 NTU
Lead	2	29	2
Aluminum	57	5490	84
Cobalt	9	44	11
Copper	9	<mark>22</mark>	<mark>19</mark>
Iron	21	4920	7
Manganese	2	899	3
Nickel	12	<mark>33</mark>	<mark>29</mark>
Vanadium	7	31	13

Turbidity can have a significant effect on the concentrations of metals in unfiltered samples. The values from turbid samples that have been filtered can be measurably higher or lower than values from low turbidity samples.

Repeatability

- Repeatability (r) is a performance measure for results that are obtained with the same method on identical test items in the <u>same laboratory</u> by the same operator over a short interval of time
 - What are the equivalent conditions that could be applied to "Field Repeatability" (*r*_f)?
 - Same field sampler?
 - Same sampling equipment?
 - Short interval of time?
 - Same preservation techniques

Reproducibility

- Reproducibility (R) is a performance measure for results that are obtained with the same method on identical test items in <u>different laboratories</u>.
 - What are the equivalent conditions that could be applied to "Field Reproducibility" (R_f)?
 - Different field sampler?

FRVI

- Different sampling equipment?
- Different sampling techniques?
- Different preservation techniques?

Using Duplicates to Estimate Measurement Uncertainty

Sample #	Original	Dupicate	Mean	Difference	%RSD
1	0.351	0.374	0.363	-0.023	6.2
2	0.271	0.265	0.268	0.006	2.1
3	0.399	0.424	0.412	-0.025	6.1
4	0.677	0.705	0.691	-0.028	4.0
5	0.813	0.932	0.872	-0.119	13.6
6	0.044	0.040	0.042	0.004	10.0
7	0.740	0.799	0.769	-0.059	7.6
8	0.221	0.260	0.241	-0.039	16.4
9	0.458	0.465	0.462	-0.007	1.6
10	0.409	0.381	0.395	0.028	7.0
11	0.530	0.596	0.563	-0.065	11.6
12	0.101	0.100	0.101	0.001	1.0
13	0.853	0.857	0.855	-0.004	0.5
14	0.167	0.163	0.165	0.003	2.0
15	0.333	0.360	0.346	-0.027	7.8
16	0.700	0.743	0.721	-0.043	6.0
17	0.465	0.495	0.480	-0.029	6.1
18	0.182	0.156	0.169	0.067	39.6
19	0.473	0.432	0.453	0.042	9.2
20	0.926	0.950	0.938	-0.024	2.6
Mean range				%	8.1
Reproducibility standard deviation				% s(R)	7.1

Max

ENVIRONMENTAL SERVICES MANUEL MANUEL

Using Duplicates to Estimate Measurement Uncertainty

Phosphate in Water, Duplicate Samples

Using Field Duplicates and Multiple Sampling Events to Estimate Measurement Uncertainty

- One possible approach is to directly use the reproducibility standard deviation (S_R) obtained from field duplicate results. In this case U_c is approximately equal to S_R
- Example: Phosphate in Water, single result = 0.50 mg/L
 - Previous number of duplicates, n = 20
 - $U_c \sim S_R = 7.1\%$
 - Measurement uncertainty = $U = 2 \times U_c = 14.2\%$

== \rightarrow a possible duplicate range of 28%

- Result = 0.50 mg/L + - 0.07

Fit for Purpose

- For a measurement to be "Fit for Purpose" it must provide the end user with sufficient accuracy and precision.
 - The end user or client must decide if the MU is within tolerance for the application.
 - Example: An analytical result meets the regulatory guideline by approximately 10% (i.e. 90% of guideline value). However the MU associated with a single measurement is +/- 30% at the guideline concentration.
 - A single measurement may not be fit for purpose.

Toluene in Fine Grain Soil

Impact of # of data points on confidence interval

Summary

- Laboratory MU excludes field duplicates. Uses laboratory duplicates
- Ideally MU should include both precision and accuracy components
- Quantifiable MU can aid in the understanding of environmental remediation processes.
- MU can be a useful parameter when concentrations approach regulatory guidelines.
- MU estimates can be obtained from existing duplicate data.
- MU should be fit for purpose.
- Multiple measurements can reduce M.U.

QUESTIONS

Phil Heaton Maxxam Analytics Inc. Phil.Heaton@maxxamanalytics.com

DRIVEN BY SERVICE AND SCIENCE