Successful Field and Lab Tests of a Multi-Process Phytoremediation System for Decontamination of Petroleum and Salt Impacted Soils Bruce Greenberg, Xiao-Dong Huang, George Dixon, **Perry Gerwing and Bernie Glick** University of Waterloo **WATERLOO** S NOITAIQ ENVIRONMENTAL **BIOTECHNOLOGY** Inc

> M Earthmaster Environmental Strategies Inc

<u>Partners:</u> Imperial Oil; Talisman Energy; ConocoPhillips Canada; Northrock Resources; Canetic Resources; BASF; EBA; OAFT; Stantec; Ontario Ginseng Growers, CRA; Region of Waterloo; City of Guelph; NSERC Development and Proof of the Multi-Process Phytoremediation System (MPPS)

- 1. 6 Years of Lab Studies
 - 1. Soil spiked with creosote (PAHs)
 - 2. Total Petrol. Hydrocarbon (TPH) contam. soil
 - 3. PAH contaminated soil from urban foundry
 - 4. Plant growth on salt impacted soils
- 2. 3 Years of Field Studies
 - TPH, Talisman Energy, Turner Valley, AB 2005-06
 - 2. TPH, North East Alberta 2005-06
 - 3. TPH, Imperial Oil Land Farm, Sarnia, ON 2004-06
 - 4. DDT, Simcoe, ON 2005

Advantages of Phytoremediation

- 1. Improves the natural structure and texture of soil
- 2. It is driven by solar energy and suitable to most regions and climates
- 3. It is low in cost and technically feasible
- 4. <u>Plants</u> can provide <u>sufficient biomass</u> for rapid remediation; <u>promote high rhizosphere activity</u>
- 5. Restoration
- 6. > 30,000 sites in Canada where such technology is needed, > 300,000 sites in the US

Description of the Multi-Process Phytoremediation System (MPPS)

Physical soil treatment:	Till the soil: exposure to sunlight and air Exposure to sunlight photooxidizes contaminants	
Bioremediation:	Inoculation of PAH/TPH degrading bacteria	
Phytoremediation:	Growth of plants alone on the soil	
MPPS:	Land farming the soil for two weeks Inoculation of PAH degrading bacteria Growth of plants with PGPR	

<u>PGPR:</u> Plant growth promoting rhizobacteria. Prevents the synthesis of stress ethylene.

Interaction of a PGPR containing ACC deaminase with a plant seed or root

Plant growth promoting rhizobacteria (PGPR)

Two natural, non-pathogenic strains of *Pseudomonas putida* (UW3 and UW4) One has high ACC Deaminase One is an auxin producer

Both PGPR are applied to seeds prior to planting

Proliferation of selected PGPR

Apply to seed, Plant seeds

Few days later (Tomato)

Control

PGPR Treated

Greenhouse Studies and demonstration of PGPR effects

Use of the Multi-Process phytoremediation System (MPPS) for Removal of Total Petroleum Hydrocarbons from Imperial Oil Soil (~ 5% TPH)

Growth of Tall Fescue – 90 d

Plants

with

PGPR

filt

Process

System

Bacteria

Degrad.

Plants only Plants with

Plants from the MPPS on Land-Farmed Contaminated Soil

IPPS

Plants only

Plant Biomass for Phytoremediation and the MPPS

Plant Biomass

Remediation Kinetics of Four Methods Tested

Remediation of different fractions of TPH after 2 4-month seasons

Field Test at Talisman Energy Biopile (1 % TPH) Turner Valley Alberta Year 1: Summer 2005 – Rye/Fescue Growth

- PGPR + PGPR

+ PGPR

Note: Weather cool and wet. Poor, gravelly soil required fertilizer 90 d

- PGPR

CCME Fractions remaining in Turner Valley Soil after 100 d – Year 1 (rye/fescue + PGPR)

Remediation Kinetics For Turner Valley Soil Greenhouse vs. Field

Turner Valley Year 2 2006 Planted May 15, 2006

Turner Valley, Year 2 2006

- Planted May 15, 2006
- Treated with seed treater
- UW3 + UW4 + Me-Celluose
- Good positive PGPR effect
- Excellent growth

Turner Valley, Year 2 Remediation

Turner Valley 2006 – 60 cm deep plot on clay pad - Planted May 15, 2006

July 28, 2006

- Controlled experiment
- Test depth of remediation
- UW3 + UW4 + Me-Celluose
- Spring ryegrass and tall fescue
- Plants have grown well
- Positive PGPR effect
- Remediation Sept 5: 15 % w/ PGPR, 6 % w/o PGPR

Field Test at Imperial Oil Land Farm, Sarnia, ON Year 1: Summer 2004 – Rye grass **Oil Sludge Total Petroleum Hydrocarbon (TPH) Contaminated Soil (15 % w/w) Plants alone (- PGPR) MPPS (+ PGPR) 60 after planting**

<u>Contaminants metab</u> <u>and/or degraded:</u>

- ~75 g TPH/kg soil removed
- All fractions removed
- 100 g DW plants/kg soil.
- Plants cannot be 75 % TPH.

MPPS

Note: Summer 2004 was a cool wet summer

ation of TPHs CCME from Imperial Oil Land Farm. 120 d

Sarnia Land Farm – 10E and 10 W – 2005 Planting

T = Treated with PGPR PM = Peat moss coated with PGPR Beads = Alginate beads containing PGPR $\leftarrow 10 \text{ m} \rightarrow \leftarrow 10 \text{ m} \rightarrow \text{Not to scale}$

Imperial Oil Land Farm, Sarnia, ON Year 2: 2005 – Fall Rye Growth

15 % TPH 60 d

+ PGPR

Note: Summer 2005 was unusually hot and dry

- PGPR

+ PGPR

10 % TPH 90 d

Imperial Oil Land Farm, Sarnia, ON Summer 2005 – Rye/Fescue Results

Root depth (+ PGPR) after 90 d was > 40 cm

TPH Removal from Sarnia Year 2

Imperial Oil Sarnia Land Farm Year 3

--CHE LA **Fall Rye overseeded Rye/Fesc/Barley** with Rye/Fescue + PGPR + PGPR June 19, 2006

Imperial Oil Sarnia Land Farm Year 3 (2006)

- Planted Barley/Fescue/Rye Grass on April 20, 2006
- Plants were treated with PGPR (UW3 and UW4) using a mechanical seed treater

40 days after planting – Weather good

Imperial Oil Sarnia Land Farm Year 3

Fall Rye overseeded with Rye/Fescue + PGPR

40 d after planting

Over seeded Rye/Fescue field, after fall rye mowed 60 d after planting

100 d after planting

Rye/Fescue, Test plots

Remediation data on Aug 15: 13 % \pm 3%

100 d after planting

HPLC assay for TPH uptake by Rye/Fescue roots

What happened to the TPH?

- TPH removed from the soil, but not in the plant roots
- TPH must have been degraded
- Where was it degraded?
- Perhaps in rhizosphere by bacteria, fungi and roots
- Soil fungi and bacteria have very active and diverse metabolic activities
- In soils with PGPR treated plants, bacteria and fungal counts are 5 to 10 fold higher

Possible degradation pathway of TPH in Soil

PGPR Can Degrade Oil

Saturated TPH in **Phos-Buff-**Saline

TPH sole reduced carbon source

No Inoculation Inoculation w/ PGPR Grow for 12 h on shaker

Control Oil consuming bact

Microbes in Sarnia Land Farm Soil From Remediation Field Trial 2006

Rye Fescue Barley Soils

Enhancement of Plant Growth on Salt Contaminated Soils Using PGPR

Effect of PGPR on Plant growth in Alberta Salt Impacted Soil EC = 2.2 dS/m, SAR = 27, CI = 260 mg/kg

Sask Salt Soil: EC = 14 dS/m , SAR = 11, Cl = 1880 mg/kg

CONCLUSIONS

- MPPS has great potential for efficient remediation of organic, salt and metal contaminated sites
- PGPR is the key: healthy plants with vigorous roots in PAH, TPH, DDT, salt and metal contam. soils
- PGPR alleviate stress and promote growth: Low ethylene and high auxin
- 8 Months in the greenhouse: MPPS removed 90 % of recalcitrant TPHs and PAHs
- 3 years of fields tests successful: MPPS removed 30 % to 60 % of recalcitrant TPHs and DDT per year
- Contaminants metabolized and/or degraded
- Great promise for restoration of oil and salt impacted sites, and brownfields

Future Work

- Continued field testing of the MPPS
- Increasing research on salt remediation
- Ready to deploy at new sites
- Proposals for new sites are being entertained
- TPH sites can be remediated in 2 to 4 years
- Further research on salt and metal remediation underway

Colleagues and partners

- The people that do all the work
 - 💮 Karen Gerhardt
 - 😰 Yola Gurska
 - 💮 Mark Lampi
 - 😨 Pearl Chang
 - 💮 Wenxi Wang
 - 💮 Haitang Wang
 - 💮 Aaron Khalid
 - David Isherwood
 - 😨 Shan Shan Wu
 - 💮 Julie Nykamp
 - 💮 Anabel Ueckermann
 - 💮 Xiao-Ming Yu

- Collaborators
 - **Xiao-Dong Huang**
 - Bernie Glick
 - Perry Gerwing
 - George Dixon
 - Ron Pitblado
 - **Partners**
 - D Bristow, L Lawlor, M Young, Imperial Oil
 - J Gordon, Talisman Energy
 - A Hopf, BASF
 - G Surgeoner, OAFT
 - **G Stephenson, Stantec**
 - 🕹 G Brooks, CRA
 - D Hoffman, Ginseng Growers
 - Region of Waterloo
 - City of Guelph
 - **NSERC**

Phytoremediation of TPH Contaminated Soil

Early in Ital Fescue Growth

Plants + PAH Deg. bacteria

Plants only

Plants + PGP

MPPS

Effectiveness of Different Methods on TPH Remediation -Second 4 month season (i.e., 8 months total)

Remediation Kinetics For Land Farm Soil Greenhouse vs. Field

Remediation time, months

Sarnia Land Farm – 2005

Barley/Rye + PGPR - PGPR

PGPR Effect on Plant Growth with 2% Salt in Irrigation Water

Dundas foundry soil – PAH contamination ~ 500 ppm

MPPS (+ PGPR)

MPPS: germinated earli

contaminated sol

he

er and grew faster in t

Dundas Foundry: 30 d growth, MPPS has 300% more plant biomass in roots and shoots than plants alone

Plants alone (-/PGPR)

MPPS (+ PGPR)

IN URINE .

Effectiveness of the MPPS for Remediation From Dundas Foundry Soil: 90 days

Multi-Process System for Remediation of PAH Contaminated Brownfield: 90 d remediation leads to ~ 40 % removal of organics

Untreated brownfield soil

Bioremediation for 90 days

MPPS for 90 days

DDT Remediation with Millet Summer 2005, Simcoe, ON

70 d growth

+ PGPR + Peat Moss w/PGPR

+ PGPR- Peat Moss

Remediation of DDT

- Approximately a 0.5 Hectare site
- SW Ontario farmland
- Homogeneous levels of DDT at ~ 0.8 mg/kg (ppm)
- Half planted with Millet and half planted with fall rye
- <u>40 % overall DDT remediation</u> after 90 d
- DDT breakdown products (DDE or DDD) not found
- Chlorinated compounds can be degraded by phytoremediation

Effect of PGPR on Plant Growth during Flooding or Drought Stress

Growth of rye grass in salt contaminated soil

EP3 (a salt tol. PGPR) -PGPR UW4+EP3 (2 PGPRs) Salt impacted clay-loam soil Fenn-Big Valley. Preliminary greenhouse experiment. CI: 1200-2000 mg/ml, SAR: 11-15, ECe: 9-15 dS/m

Growth of fall rye in salt contaminated soil from Fenn-Big Valley

Triticale/Barley Mix Year 1: Summer 2005, North East, AB ~ 1 % TPH on a 7 Hectare site

- PGPR +PGPR 70 d growth on good soil

Remediation of the NE Alberta Site

- A very large site: > 7 hectares
- Overall ~1 % TPH, with high variability in TPH levels (0.3 to 3 % TPH)
- <u>6 Hectares planted</u>: Large scale pilot remediation; All plants (barley/fall rye mix, <u>2000 kg of seeds</u>) were PGPR treated
- 1 Hectare was used as a random block test for PGPR efficacy. Barley, fall rye and triticale were used
- Pilot area: 15% to 30 % remediation was observed in 70 d
- Random block test (70 d), % remediation:

	<u>+ PGPR</u>	<u>- PGPR</u>
F3	$\textbf{2.8} \pm \textbf{0.5}$	- 4.2 ± 0.7
F4	8.9 ± 1.3	$\textbf{1.9} \pm \textbf{0.3}$
Total	21.9 ± 4.7	16.7 ± 2.3
F4G	32.6 ± 10.9	28.7 ± 5.3

- Consistent rates of remediation observed
- Evidence of PGPR improvement, PGPR impact on par with Turner Valley
- <u>2006 season:</u> Planted only + PGPR Barly/Rye on June 20.

Multi-Process Phytoremediation System (MPPS)

- 1. Complicated mixtures of contaminants are present in the environment
- 2. Many techniques based on an individual process failed or were ineffective
- 3. Contaminants are too toxic to plants and bacteria for remediation
- 4. Use and understanding of different remediation mechanisms
- 5. Multiple remediation kinetics resulting in effective and efficient remediation

Field Test at Talisman Energy Biopile (1 % TPH) Turner Valley Alberta Summer 2005 – Rye/Fescue Plant Growth

- PGPR + PGPR

- PGPR

+ PGPR

Average root depth: 21 cm

Field Test at Imperial Oil Land Farm, Sama 15 % Total Petroleum Hydrocarbon (TPH)

7ear 1: Summer 2004 - 60 d after planting

Rye Grass + PGPR

Field Test at Imperial Oil Land Farm, 120 d

Rye Grass + PGPR

Rye Grass + PGPR

Rye Grass - PGPR