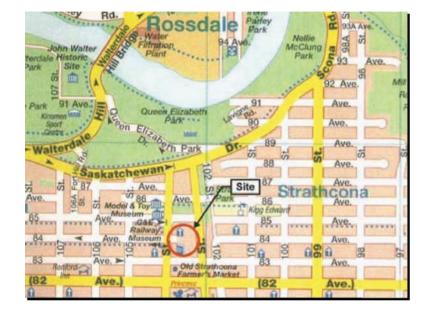
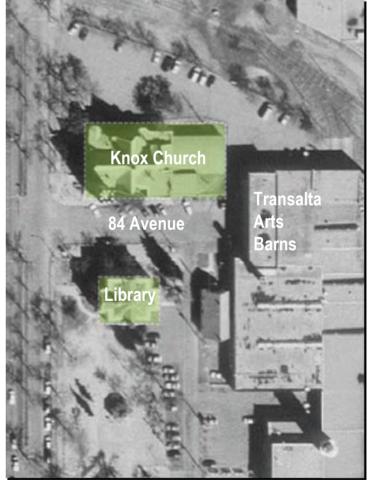


CREATING AND DELIVERING BETTER SOLUTIONS

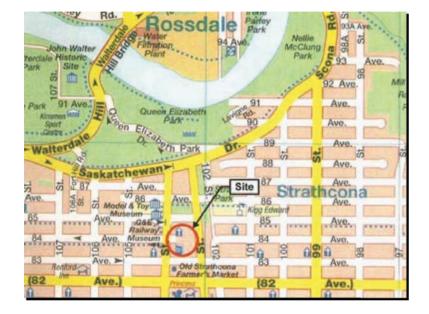
Managing and Mitigating Extensive Subsurface Fuel Product Beneath Two Inner-City Heritage Buildings

Ken Friedrich, P.Eng., The City of Edmonton Paul R. Morton, P.Geol., EBA Engineering


Presentation Outline


- Part I, Description and Planning location, buildings, stakeholders, integration with other activity.
- **Part II, Scope and Risk** hydrocarbon impacts, remediation ranking, remediation modes, field trial.
- Part III, Design remediation components.
- **Part IV, Implementation** HDD and well construction, difficulties and problems, commissioning, remediation progress to-date, community benefits.

Part I, Description and Planning - Location



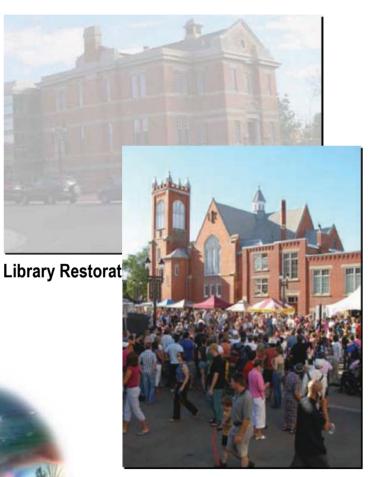
Part I, Description and Planning - Location

Part I, Description and Planning - Buildings

Strathcona Library

Part I, Description and Planning - Stakeholders

- Knox Church
- The City of Edmonton:
 - Community Services, Drainage Services, Library Board, Planning and Development, Property Management, Transportation and Streets
- Edmonton Radial Railway Society (leasing rail ROW)
- Edmonton International Fringe Theatre Festival
- Heritage Resources Management Branch
 - Old Strathcona Foundation
 - Regulatory (Alberta Environment)

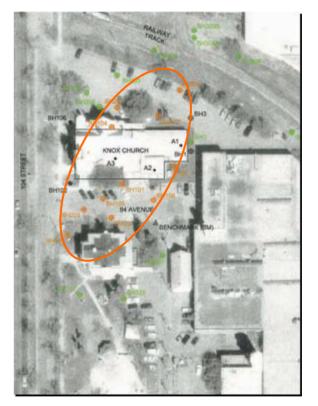


Library Restoration and Expansion

www.eba.ca

Edmonton Fringe Festival (August)

84 Avenue Upgrading


- **Part I, Description and Planning** location, buildings, stakeholders, integration with other activity.
- Part II, Scope and Risk hydrocarbon impacts, remediation ranking, remediation modes, field trial.
- Part III, Design remediation components.
- Part IV, Implementation HDD and well construction, difficulties and problems, commissioning, remediation progress to-date, community benefits.

Part II, Scope and Risk - Hydrocarbon Impacts

Diesel Fuel Product in Monitoring Wells (Red)

Dissolved Hydrocarbons in Monitoring Wells (Orange)

Part II, Scope and Risk - Remediation Ranking

www.eba.ca

Ranking for Groundwater Remediation Difficulty

Host Media	Mobile Dissolved (Degrades/ Volatilizes)	Mobile Dissolved	Strongly Sorbed, Dissolved (Degrades/ Volatilizes)	Strongly Sorbed, Dissolved	Separate Phase LNAPL	Separate Phase DNAPL
Homogeneous Single Layer	1	1 - 2	2	2 – 3	2 - 3	3
Homogeneous Multiple Layers	1	1 - 2	2	2 – 3	2 - 3	3
Heterogeneous Single Layer	2	2	3	3	3	4
Heterogeneous Multiple Layers	2	2	3	3	3	4
 Fractured Bedrock 	3	3	3	3	4	4

Note: 1 = least difficult, 4 = most difficult

National Research Council

Part II, Scope and Risk - Remediation Ranking

- Vertical and inclined wells
 - proven for liquid and vapour phases
 e.g., BV, IAS, SVE, MPE, P & T
 - MPE copes well with WT fluctuation
- Horizontal wells
 - proven for vapour phase
 - e.g., BV, SVE
 - proven for fully submerged liquid phase
 e.g., P & T, possibly IAS
 - MPE copes poorly/stops with WT fluctuation

Part II, Scope and Risk - Remediation Ranking

- Vertical and inclined wells
 - proven for liquid and vapour phases
 e.g., BV, IAS, SVE, MPE, P & T
 - MPE copes well with WT fluctuation
- Horizontal wells
 - proven for vapour phase
 - e.g., BV, SVE
 - proven for fully submerged liquid phase
 e.g., P & T, possibly IAS
 - MPE copes poorly/stops with WT fluctuation

Part II, Scope and Risk - Remediation Modes

Vertical Wells Versus Horizontal Wells (for MPE)

Criteria	Vertical and Inclined Wells	Horizontal (HDD) Wells	
 Accessibility under buildings, etc. 	Lowest angle is about 45° to 30° (from horizontal)	Wells fully horizontal after reaching design elevation	
 Contractor specialization 	Moderate only	Highly specialized	
• Distance/radius of influence	Typically 2 m to 10 m radius (ROI), depending on soil type	Typically distance (DOI) is 3x to 5x vertical well ROI, for same soil type	
 Screen design 	Standard PVC slot sizes	Specialized slot sizing to ensure end- of-pipe residual effect	
 Site disruption (trenching) 	Trenching to connect all wellheads	No trenching, well is its own connection	
• Tolerance to WT fluctuation	Screen 'straddles' a large range of potential WT movement	Risk of screen dewatering or excessive submergence relative to WT. Contingency needed to avoid submergence ('dead heading')	
Winterization	Need to insulate and possibly heat- trace all surface 'headers'	Well components below frost line are already winterized	

Part II, Scope and Risk - Remediation Modes

www.eba.ca

Vertical Wells Versus Horizontal Wells (for MPE)

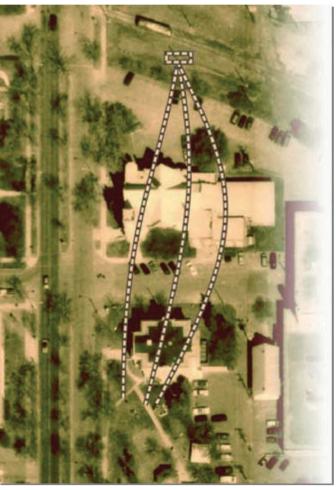
Criteria	Vertical and Inclined Wells	Horizontal (HDD) Wells Wells fully horizontal after reaching design elevation	
 Accessibility under buildings, etc. 	Lowest angle is about 45° to 30° (from horizontal)		
Contractor specialization	Moderate only	Highly specialized	
Distance/radius of influence	Typically 2 m to 10 m radius (ROI), depending on soil type	Typically distance (DOI) is 3x to 5x vertical well ROI, for same soil type	
Screen design	Standard PVC slot sizes Specialized slot sizing to ensure e of-pipe residual effect		
 Site disruption (trenching) 	Trenching to connect all wellheads	No trenching, well is its own connection Risk of screen dewatering or excessive submergence relative to WT. Contingency needed to avoid submergence ('dead heading')	
 Tolerance to WT fluctuation 	Screen 'straddles' a large range of potential WT movement		
Winterization	Need to insulate and possibly heat- trace all surface 'headers'Well components below frost line already winterized		

Part II, Scope and Risk - Remediation Modes

Vertical Wells Versus Horizontal Wells (for MPE)

Criteria	Vertical and Inclined Wells	Horizontal (HDD) Wells	
 Accessibility under buildings, etc. 	Lowest angle is about 45° to 30° (from horizontal)	0° (from Wells fully horizontal after reaching design elevation	
Contractor specialization	ractor specialization Moderate only Highly specialized		
Distance/radius of influence	Typically 2 m to 10 m radius (ROI), depending on soil type	Typically distance (DOI) is 3x to 5x vertical well ROI, for same soil type	
 Screen design 	Standard PVC slot sizes	Specialized slot sizing to ensure enco of-pipe residual effect	
• Site disruption (trenching)	Trenching to connect all wellheads	No trenching, well is its own connection	
Tolerance to WT fluctuationpotential WT movementexcessive submergence rel WT. Contingency needed to		Risk of screen dewatering or excessive submergence relative to WT. Contingency needed to avoid submergence ('dead heading')	
Winterization	Need to insulate and possibly heat- trace all surface 'headers' Well components below frost line already winterized		

Part II, Scope and Risk - Field Trial



- Extraction wells
 - 100 metre long HDD wells (3)
 - Custom slot size
 - End-of-well vacuum sensors
 - Pneumatic well flushing
- Liquids separation and collection
- Water treatment (solids, GAC, MCM)
- Off-gas catalytic oxidation (incineration)
- Sensor data acquisition and PLC system
- Satellite link for Web monitoring and control Secure and noise-reducing enclosure

• Extraction wells

- 100 metre long HDD wells (3)
- Custom slot size
- End-of-well vacuum sensors
- Pneumatic well flushing
- Liquids separation and collection
- Water treatment (solids, GAC, MC
- Off-gas catalytic oxidation (inciner
- Sensor data acquisition and PLC
 Satellite link for Web monitoring a Secure and noise-reducing enclos

- Extraction wells
 - 100 metre long HDD wells (3)
 - Custom slot size
 - End-of-well vacuum sensors
 - Pneumatic well flushing
- Liquids separation and collection
- Water treatment (solids, GAC MCM
- Off-gas catalytic oxidation (incineration)
- Sensor data acquisition and PLC system
 Satellite link for Web monitoring and control
 Secure and noise-reducing enclosure

Extraction wells

- 100 metre long HDD wells (3)
- Custom slot size
- End-of-well vacuum sensors
- Pneumatic well flushing
- Liquids separation and collect
- Water treatment (solids, GAC
- Off-gas catalytic oxidation (inc
- Sensor data acquisition and P
 Satellite link for Web monitoring
 Secure and noise-reducing er

www.eba.ca

Extraction wells

- 100 metre long HDD wells (3)
- Custom slot size
- End-of-well vacuum sensors
- Pneumatic well flushing
- Liquids separation and collect
- Water treatment (solids, GAC
- Off-gas catalytic oxidation (inc
- Sensor data acquisition and P
 Satellite link for Web monitoring
 Secure and noise-reducing er

is

- Extraction wells
 - 100 metre long
 - Custom slot size
 - End-of-well vacuum s
 - Pneumatic well fushing
- Liquids separation and collection
- Water treatment (solids, GAC, W
- Off-gas catalytic oxidation (incineration)
- Sensor data acquisition and PLC system
- Satellite link for Web monitoring and control
- Secure and noise-reducing enclosure

Part IV, Implementation - HDD and Well Construction

Part IV, Implementation - Difficulties and Problems

www.eba.ca

Part IV, Implementation - Commissioning

Treated Water Sampling (COE Sewer Bylaw)

Catalytic Oxidizer (Incinerator) for Off-gas Destruction

Part IV, Implementation – Remediation Progress

www.eba.ca

Well ID	In-well Product Thickness (cm)				
	April 2005	November 2005	May 2006		
103	34	19	-		
104	51	73	-		
107	26	20	16		
108	7	15	-		
207	17	18	-		
BH 4-3	5	10	63		
BH 4-4	10	37	-		

Extracted hydrocarbon mass (approx.):

- Separated phase (oil)
 50 kg
- Sorbed phase (GAC)
 160 kg
- Sorbed phase (MCM) 1,415 kg
- Vapour phase (oxidized) 8,600 kg

Total (March - September, 2006) ±10,225 kg

Extracted hydrocarbon mass (approx.):

- Separated phase (oil)
 50 kg
- Sorbed phase (GAC) 160 kg
- Sorbed phase (MCM) 1,415 kg
- Vapour phase (oxidized) 8,600 kg
- Total (March September, 2006) ±10,225 kg (±12,500 litres, or ±2,750 igal.)

Part IV, Implementation - Community Benefits

www.eba.ca

Acknowledgments – Project Team

HAMILTON & OLSEN SURVEYS LTD

Thank You

CREATING AND DELIVERING BETTER SOLUTIONS

www.eba.ca

EBA Engineering Consultants Ltd.