RemTech 2006

Beginning With the End in Mind: When to Shut Down a Remedial System?

By (in no particular order): Yong Li, Scott Digel, and Elwyn Lyons

RemTech 2006

DISCLAIMER:

This talk is about a journey that isn't over yet!

Things That We Already Know...

- 1. Projects follow a life cycle during which a variety of different remediation and risk management strategies may be appropriate
- 2. Active remediation using some sort of system (DPVE, Air Sparging, etc.) is typically appropriate early in the life cycle
- 3. Systems are expensive to operate
- 4. You usually won't achieve site closure with active remediation alone

Simplified Project Life Cycle

WHEN and WHY should you shut a system off and how can you try to answer these questions before you turn it on?

3 Approaches:

Install and hope to figure it out on the fly [the old way]

Assess, design, determine empirical criteria and then install [experience-based]

Assess, design, determine empirical and quantitative criteria and then install [experience-based and predictive]

Understanding System Performance

- Developing an understanding can be complex and site-specific, but general trends exist
- Extraction rates typically show exponential decline
- Irregularities are introduced by modification of the system or its' operation

Years of Operation

O'CONNOR ASSOCIATES 🔊

Volume (L)

Estimated Product Extraction Rate From A Dual Phase Extraction System

Why the Exponential Decline?

Conservation of Mass:

$$V\frac{dC}{dt} = -aQC$$

where

- V = total volume affected by extraction $[L^3]$
- C = concentration of extractable contaminant $[M/L^3]$

- Q = extraction flux [L³ / T]
- a = constant

Why the Exponential Decline?

Solution of the CoM Equation:

$$C = C_0 \times e^{-\alpha t}$$
, where:
 $\alpha = \frac{aQ}{V} [1/T]$

Extraction rate changes with time:

$$R = QC$$

= contaminant extraction rate [M / T]

$$\mathbf{R} = \mathbf{R}_0 \times e^{-\alpha t}$$

Why the Exponential Decline?

A Dual Porosity Model Can Describe the Curve:

$$R = R_0 \times e^{-\alpha t}$$
 for early stand

for early stages (advection, large pores)

for later stages (diffusion, small pores) $\alpha >> \beta$

Other Contributing Factors:

- Contaminant migration towards extraction wells
- Degradation, attenuation

Irregularity Is Normal

And may be due to:

- Changes in system configuration
- Pulse' operation to improve system efficiency
- System maintenance difficulties

But:

Exponential declines resume

Example 2

Estimated Product Extraction Rate

From A Dual Phase Extraction System

Years of Operation

Can We Predict Early On ?

Yes:

- Use short-term monitoring data to predict long-term trends
- > Select "representative" data set(s)
- Modify predictions when additional data are available
- But there will be uncertainties and we may underpredict the system lifespan!

Estimated Product Extraction Rate Prediction Based on 1-Year Monitoring Data

Example 2

Estimated Product Extraction Rate Prediction Based on 1-Year Monitoring Data

Estimated Product Extraction Rate Prediction Based on 1-Year Monitoring Data

Years of Operation

Can We Predict Beforehand?

Possible, but with UNCERTAINTIES

Experience-based (e.g. rapid decline in first few months, slow changes for a few years)

- Modelling (SVE, Air Sparging, MPE). Promising but expensive.
- Experience-based with quantitative estimation

What Do We Need to Know?

Assume that system performance can be approximated by an exponential curve, then estimate:

- Initial extraction rate (pilot test)
- Rate of decline (early stage, later stage, system type, and site conditions)
- Rebound effects (difficult)

o'connor associates 🚳

Shut Down at 2 L/day or 10 L/day ?

Situation-specific, but assessable:

- Remaining time to remediate at asymptotic extraction rate >> desired clean-up time frame and system operation modifications show little improvement
- Site becomes clean, or data show that system is not affecting site conditions
- More efficient remedial options are available

A System Shut-down Decision Matrix

Must:

Monitor and and asses system operation
 Monitor and assess site conditions

Bottom Line Is continued operation of the system improving the site conditions?

o'connor associates 🚳

A Long-term Vision of Site Clean-up

Closing Comments

- Right now, it can be difficult to predict when to shut the system off
- System performance is complex, but general trends exist
- Worth trying to anticipate the trends based on tests, early observations, and experience
- Exponential curves are simple and useful tools to describe system performance

Closing Comments (continued)

- Decision to shut down a system should be made based on both system performance evaluation and site monitoring.
- Multiple remedial actions will be taken at different stages of site clean-up.

THANK YOU!

