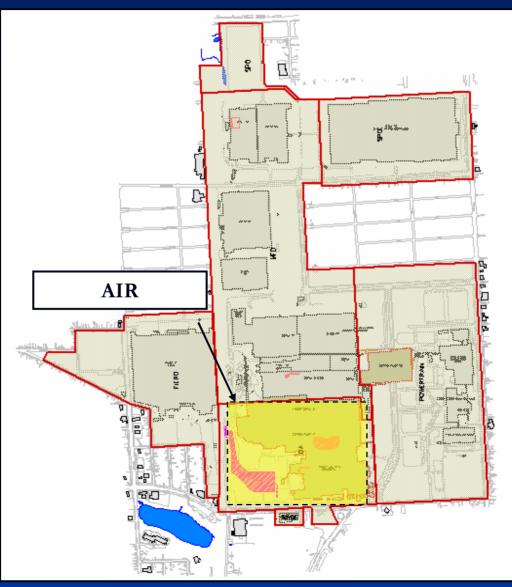
Use of Laser Induced Fluorescence (LIF), Soil/LNAPL Laboratory Testing, Modeling and Actual Recovery Data to Evaluate LNAPL Mobility, Stability and Recoverability

RemTech 2006 – Banff, Alberta

Matthew C. Rousseau, Conestoga-Rovers & Associates Ltd. David J. Cushman, Conestoga-Rovers & Associates Ltd. Gavin O'Neill, Conestoga-Rovers & Associates Ltd. Robert W. Hare, General Motors Corporation



Case Study - Background

- Subject Site 600 acre General Motors Corporation (GM) manufacturing facility in the U.S.;
- South portion of Site (approximately 100 acres) leased to a 3rd party and undergoing redevelopment for the construction of an 800,000 square foot building;
- Area referred to as Area of Industrial Redevelopment (AIR).

Site / AIR / LNAPL Areas

Background (Cont'd)

LNAPL was discovered in various areas in the AIR, including an area which in part, was located beneath the proposed building footprint; An aggressive LNAPL recovery program was implemented in the footprint area in support of the construction schedule in the AIR (refer to Cushman et al., RemTech 2006); and This paper focuses on the LNAPL mobility and recoverability evaluation conducted in the remaining LNAPL areas within the AIR.

Geology/Hydrogeology

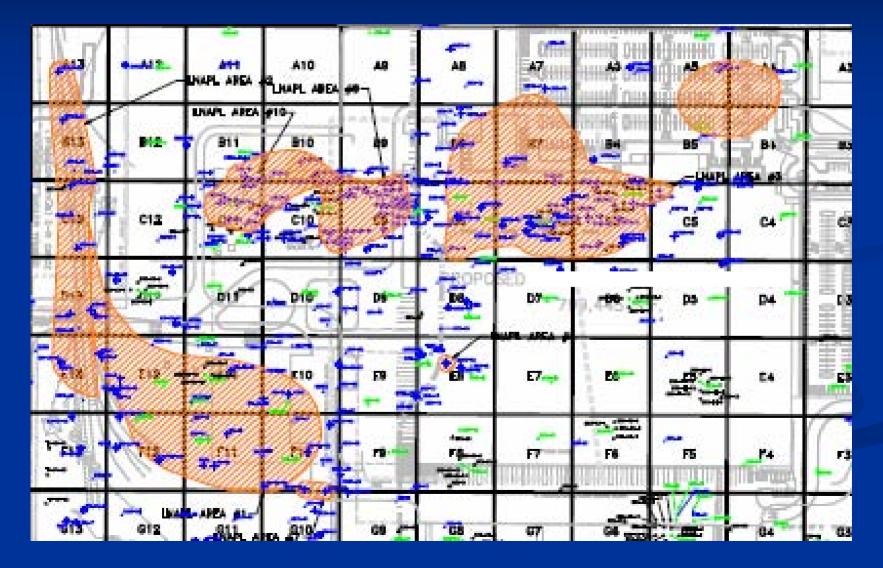
- Geology is comprised of low permeability glacial soils (silts and clays with occasional sand seams) with several areas of sand fill material;
- Depth to air/LNAPL interface varies from approximately 15 to 30 feet bgs;
- LNAPL thicknesses vary from a sheen to 12 feet; and
- LNAPL has been fingerprinted as a weathered No. 2 fuel oil/diesel with lesser amounts of No. 6 fuel oil.

LNAPL Mobility Evaluation Methodology

- Conducted Laser Induced Fluorescence (LIF) survey using Rapid Optical Screening Tool (ROST) technology;
- Collected undisturbed soil cores in select locations of soil zones exhibiting varying degrees of relative fluorescence during ROST (greatest to least);
- Submitted soil cores for laboratory photography and testing of key LNAPL mobility parameters;

LNAPL Mobility Evaluation Methodology (Continued)

- Compared laboratory measured LNAPL saturation and corresponding residual saturation values to qualitatively evaluate inherent mobility potential;
- Calculated maximum LNAPL relative permeability, conductivity, mobility and velocity values for each sample location using API/Charbeneau methods; and
- Compared calculated LNAPL velocities to *de minimis* mobility threshold for LNAPL*.


De Minimis LNAPL Velocity*

It has been suggested that an LNAPL velocity of 1 x 10⁻⁶ cm/s or less, represents the *de minimis* mobility threshold for LNAPL (ASTM, 2005);

This threshold plays a critical role in LNAPL mobility evaluations and the potential need for active recovery systems.

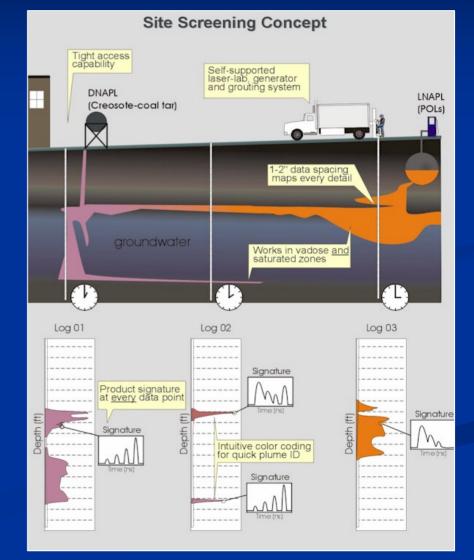
Conventional Delineation

- Conventional LNAPL delineation accomplished using various conventional drilling/direct push methods including hollow stem auger, rotosonic, and Geoprobe;
- Soil screening for LNAPL accomplished using visual and olfactory techniques, field screening (PID, UV light, shake tests, OilScreenSoil-Sudan IV);
- Wells installed in areas with high potential for LNAPL based on soil screening.

LNAPL Delineation – Conventional vs. Innovative Sophisticated Delineation Advanced 128 ROST points throughout AIR; ROST conducted using special Cone

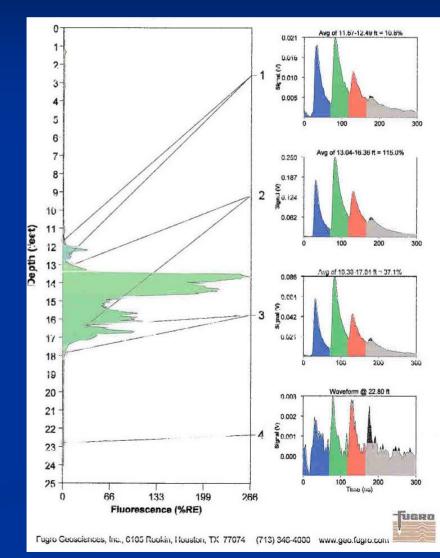
Penetration Testing (CPT) rig. Soil classification based on resistance and friction to CPT probe during penetration through ground;

CPT probe equipped with laser/sapphire window assembly;

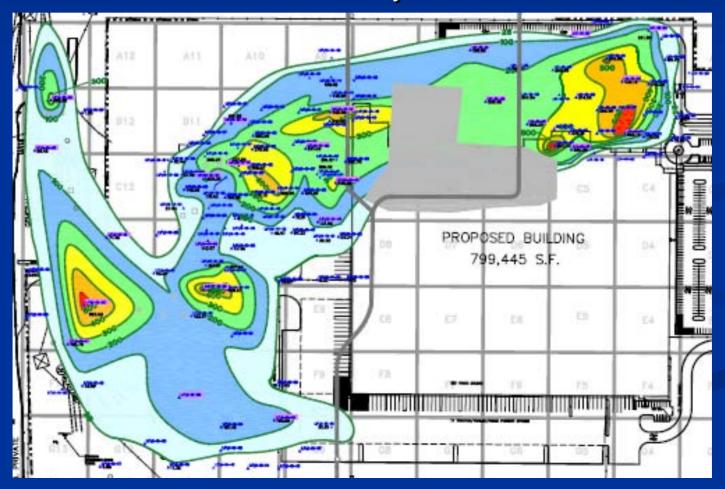

Sophisticated Delineation

- As probe is advanced, laser light is directed through the window and into the subsurface;
- Laser light is absorbed by the aromatic hydrocarbon molecules which causes the molecules to fluoresce;
- A portion of the fluorescence is reflected through the sapphire window and returned via fibre optic cable to the detection system in the CPT rig;

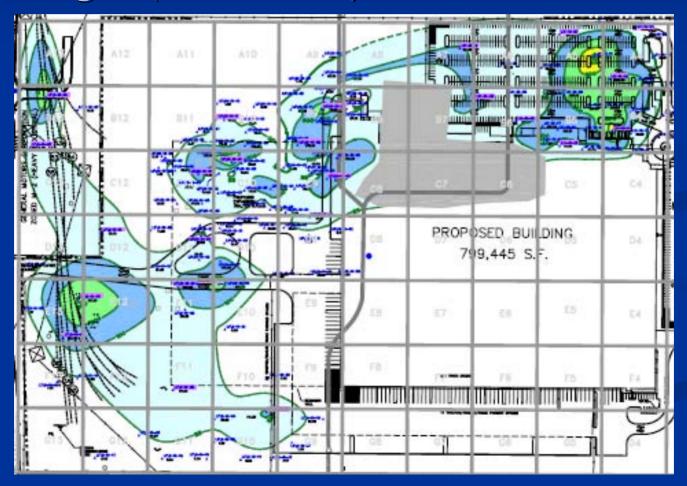
Sophisticated Delineation


- The emission data from the pulsed laser light is averaged into one reading per second intervals and is recorded continuously;
- Intensity of fluorescence is quantified via comparison against a standard hydrocarbon mixture used to calibrate laser;
- The intensity of the fluorescence is proportional to the amount of hydrocarbon present.

LIF site
 investigation
 technique
 overview

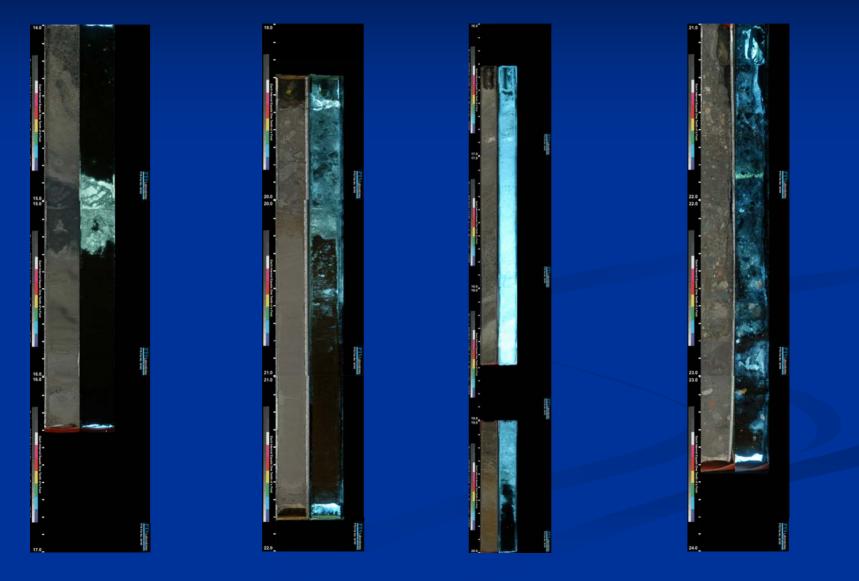


Source: Dakota Technologies, Inc.


ROST output
 from subject
 site investigation

Maximum ROST Intensity Plan View

Averaged (1-foot thick) ROST Plan View


Soil Core Locations

- Based on ROST results, 24 borings were advanced and 'undisturbed' Shelby Tube soil cores collected from areas shown to be LNAPL impacted;
- 7 locations were deemed to be the most impacted with LNAPL based on ROST relative fluorescence readings; 17 locations were deemed to be less impacted to evaluate areas of lesser saturation and LNAPL fringe areas.

Core Photography

- Soil cores submitted for core photography in both white light and ultraviolet (UV) light;
 LNAPL, when exposed to UV light, fluoresces;
 Intensity of fluorescence corresponds to amount of LNAPL;
- Lighter end hydrocarbons (gasoline/kerosene) tend to fluoresce white/blue; middle ends yellow/gold; and heavy ends red/brown.

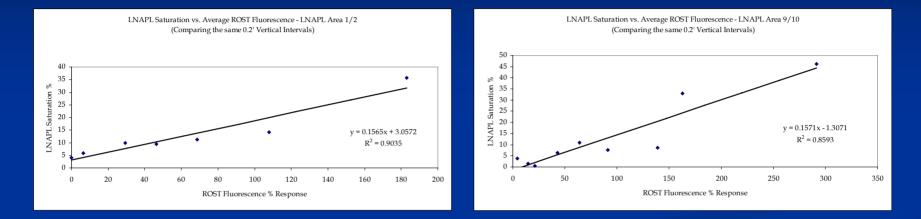
Core Photography

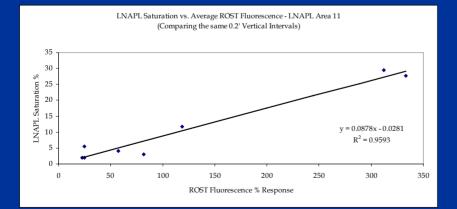
Laboratory Testing of LNAPL Mobility Parameters

- Discrete soil zones (0.2') of maximum UV fluorescence (based on qualitative assessment of core photos cross-referenced with ROST results) were submitted for testing of the following parameters:
 - LNAPL saturation and residual saturation;- soil grain size analysis, total porosity
- Water/LNAPL samples submitted for testing of density, viscosity and interfacial tensions.

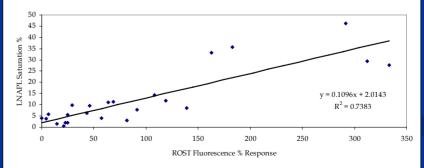
Summary of ROST / Lab Results

ROST DATA												CORE PHO	TOGRAPHY	DATA					
Ауатаа						SUBSANPLE DATA FROM LABORATORY TESTING													
	Maximum	Depth	Thickness	Thickness Interval +/	Fluorescence Over		Observed Impacted		Interval of Maximum	DA			FPMP			SAT		Selected Corresponding	Average Fluorescence
RostID	Flourescence (% Response)	(feet bgs)	(feet)	1' from Maximum Response	1º Interval	Core ID	Interval(s) (feet bgs)	CPT Soil Type	Saturation (feet bgs)	Depth	Saturation	Residual Saturation	Depth	Saturation	Residual Saturation	Depth	Saturation	ROST Interval (feet bgs)	Over Selected Interval (% Response)
	for receipting			- Acoposite	(% Response)		(recross)		(cer og sj	(feet bgs)	(96)	(61)	(feet bgs)	(90)	(64)	(feet bgs)	(64)	(accrogi)	(or response)
L1_2-03	553.93	14.06	0.42	13.56-14.56	313.21	L1/2-RI-03	13.15-13.25	CLAYS	15.7-15.9	15.5-15.7	1.30	8.10	15.7-15.9	5.30	5.10	15.9-16.1	4.10	13.90-14.10	426.14
							13.6-14.1	CLAYS											
							15.15-15.3	SANDS											
							15.3-15.4	SILTY SAND											
							15.4-15.5	CLAYEY SANDY SILT&SILT											
							15.5-15.75	CLAYEY											
							10.040.00	SILT&SILTY											
								CLAYS											
							15.75-15.8	SILTY SAND											
							15.8-16.1	SANDS											
11_2-05	157.64	8.41	1.07	7.91-8.91	94.60	L1/2-R1-05	20-21.25	CLAYEY SANDY SILT&SILT	20.1-20.3				20.8-21	14.70	13.10	20.05-20.25	9.50	20.60-20.80	64.71
							21.35-21.65	CLAYEY SANDY										21.3-21.5	86.17
								SILT&SILT											
11_2-06	190.00	25.11	0.55	24.61-25.61	111.29	L1/2-R1-06	25.2-26	SILTY SAND	25.4-25.6	25.2-25.4	19.80	11.60	25.4-25.6	18.20	16.80	25.6-25.8	11.30	25-25.2	137.50
11_2-00	190.00	25.11	0.35	24.01-25.01	111.29	1.1/2-10-06	25.2-26	BILLITSAND	25.4-25.8	25.2-25.4	13.00	11.00	25/4-25.0	16.20	18,00	25.0-25.0	11.50	25-25.2	137.50
																1			
11_2-11	194.75	14.40	0.53	13.90-14.90	124.34	L1/2-RI-11	13.05-13.2	CLAYEY SANDY	14.7-14.9"				13.05-13.25	14.00	12.80	13.8-14	14.20	14.2-14.4	174.74
								SILTESILT											
							13.2-13.6	SILTY SAND											
					1		13.6-13.65	CLAYEY SANDY SILT&SILT											
							13.65-13.8	SILTY SAND											
							13.8-14.3	CLAYEY SANDY											
								SILT&SILT											
							20.4-20.9	SANDS											
11_2-21	71.45	14.79	0.21	14.29-15.29	38.19	L1/2-R1-21	13.4-13.45	SILTY SAND	14.9-15.1				14.9-15.1	9.70	8.80	1345-13.65	9.80	14.75-14.95	49.41
							13.45-13.6	CLAYEY SANDY											
								SILT&SILT											
							13.6-13.8	SILTY SAND											
							14.85-14.95	CLAYEY SANDY SILT&SILT							-				
							14.95-15.3	SILTY SAND											
11_2-22	86.48	15.13	0.48	14.63-15.63	41.55	L1/2-R1-22	15.5-16.4	SANDS	15.8-16							15.8-16	5.80	15.1-15.3	70.22
						, -													
	i i									-			-						


LNAPL Saturation vs. Residual Saturation


- LNAPL saturations measured using API RP 40 (Dean-Stark);
- LNAPL residual saturations measured using ASTM D425M, Dean-Stark (centrifugal test) and ASTM D6836 (drainage/imbibition capillary pressure test);
- Results indicated that all 24 locations above residual saturation;
- Only 4 locations were more than 25% above residual saturation (based on more conservative centrifugal test).

ROST / LNAPL Saturation Correlation


- Plotted ROST fluorescence response against laboratory measured LNAPL saturation to see if a strong correlation could be established for the LNAPL areas;
- Achieved R² values of 0.90 for first area, 0.86 for second area, and 0.95 for third area with an overall correlation of 0.74 (Note: Soil types in each area are relatively consistent); and
- Results suggest that LNAPL saturations may be calculated for all 127 ROST points based on these relationships.

ROST / LNAPL Saturation Correlation

LNAPL Saturation vs. Average ROST Fluorescence - All Areas Combined (Comparing the same 0.2' Vertical Intervals)

LNAPL Mobility Calculations (API, 2004)

LNAPL mobility is expressed as:

$$M_o = \frac{T_o}{V_o}$$

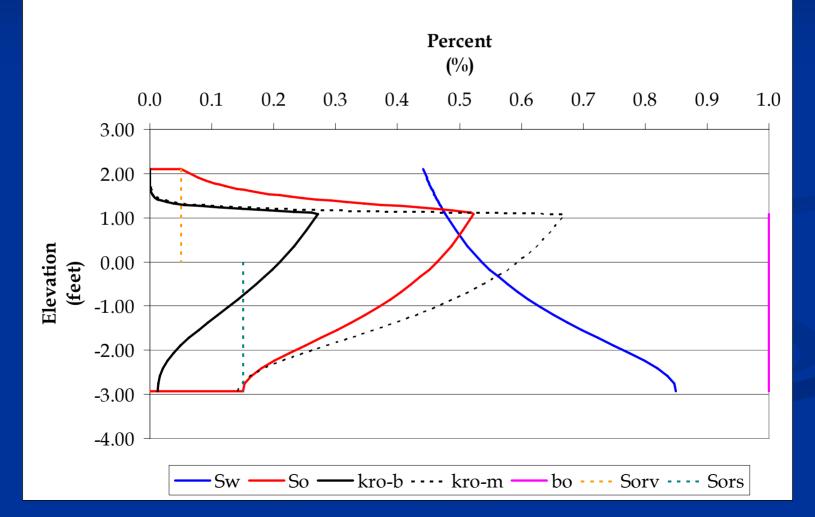
■ Where: ■ *M*_o ■ *V*_o

- *M_o* = inherent oil mobility (ft/day)
 V_o = specific oil volume per unit area (ft³/ft²)
 - = oil transmissivity (ft²/day)

LNAPL Mobility Calculations (API, 2004)

$$V_o = \int_{z_1}^{z_2} \phi S_o dz$$

$$\overline{V_o} = b_o \phi \overline{S_o}$$


$$T_o = \frac{\rho_o}{\rho_w} \frac{\mu_w}{\mu_o} \int_{z_1}^{z_2} k_{ro} K_w dz$$

$$\overline{T_o} = b_o \overline{K_o}$$

$$\overline{M_o} = \frac{b_o \overline{K_o}}{b_o \phi \overline{S_o}} = \frac{\overline{K_o}}{\phi \overline{S_o}}$$

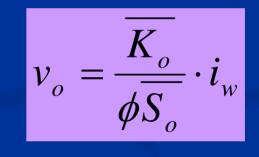
LNAPL Mobility Calculations (API, 2003)

Typical LNAPL Saturation and Relative Permeability Profiles

- The laboratory measured LNAPL saturation value was deemed to represent the <u>maximum</u> LNAPL saturation point at the sample location (based on ROST and UV photography), thereby representing the greatest saturation point on the preceding saturation profile;
- This measured <u>maximum</u> saturation was then used to determine LNAPL relative permeability, conductivity, mobility and velocity.

LNAPL Mobility Calculations (API, 2003)

$$k_{ro}(S_w, S_o) = S_o^2 \left[\left(\frac{S_t - S_{wr}}{1 - S_{wr}} \right)^{\frac{\lambda + 2}{\lambda}} - \left(\frac{S_w - S_{wr}}{1 - S_{wr}} \right)^{\frac{\lambda + 2}{\lambda}} \right]$$


$$k_{ro}(S_w, S_o) = S_o^{1/2} \left\{ \left[1 - \left(\frac{S_w - S_{wr}}{1 - S_{wr}} \right)^{1/M} \right]^M - \left[1 - \left(\frac{S_t - S_{wr}}{1 - S_{wr}} \right)^{1/M} \right]^M \right\}^2$$

$$\overline{K_o} = \overline{k_{ro}} K_w \frac{\rho_o \mu_w}{\rho_w \mu_o}$$

$$\overline{q_o} = \overline{K_o} i_w$$

$$v_o = \frac{\overline{q_o}}{\phi_{eff}}$$

$$\phi_{eff} = \phi \overline{S_o}$$

$$v_o = M_o \cdot i_w$$

Table 6.2									
LNAPL Relative Permeability, Conductivity, Mobility and Velocity Calculations ⁽¹⁾									
LNAPL Area 9/10									
Data Input Values Location, Data Input and Calculations									
	RI-01	RI-04	RI-12	RI-15	RI-48	RI-49	RI-52	RI-55	RI-59
LNAPL Saturation (S_{o})	0.463	0.331	0.086	0.077	0.006	0.063	0.016	0.037	0.110
Water Saturation (S _w)	0.310	0.462	0.819	0.755	0.876	0.743	0.751	0.866	0.639
Total Fluid Saturation (St)	0.773	0.793	0.905	0.832	0.882	0.806	0.767	0.903	0.749
Irreducible Water Saturation (S _{wr})	0.148	0.129	0.477	0.150	0.150	0.393	0.441	0.150	0.344
van Genuchten N (N)	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	1.850
LNAPL Density (ρ_o) - (g/cm ³)	0.849	0.849	0.849	0.849	0.849	0.849	0.849	0.849	0.849
LNAPL Viscosity (µ _o) - (cp)	8.280	8.280	8.280	8.280	8.280	8.280	8.280	8.280	8.280
Total Soil Porosity (Φ)	0.403	0.375	0.364	0.389	0.307	0.361	0.398	0.422	0.667
Assumed Average LNAPL Saturation (S _{o avg})	0.232	0.166	0.043	0.039	0.003	0.032	0.008	0.019	0.055
Hydraulic Gradient	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
Hydraulic Conductivity Water (K _w) - (cm/s)	1.00E-03	1.00E-02	1.00E-02	1.00E-03	1.00E-01	1.00E-02	1.00E-03	1.00E-02	1.00E-04
Calculated Parameters									
Model Parameter 1 (λ)	1.809	1.809	1.809	1.809	1.809	1.809	1.809	1.809	0.662
Model Parameter 2 (M)	0.750	0.750	0.750	0.750	0.750	0.750	0.750	0.750	0.459
Maximum LNAPL Relative Permeability (k _{ro})	1.05E-01	4.74E-02	1.83E-03	8.31E-04	4.51E-07	5.19E-04	8.27E-06	1.07E-04	2.97E-03
Maximum LNAPL Conductivity (K_0) - (cm/s)	1.08E-05	4.86E-05	1.87E-06	8.52E-08	4.63E-09	5.32E-07	8.48E-10	1.09E-07	3.05E-08
Maximum LNAPL Mobility $(M_0) - (cm/s)$	5.78E-05	3.92E-04	5.98E-05	2.85E-06	2.51E-06	2.34E-05	1.33E-07	7.01E-06	4.16E-07
Maximum LNAPL Velocity (V_0) - (cm/s)	2.89E-07	1.96E-06	2.99E-07	1.42E-08	1.26E-08	1.17E-07	6.66E-10	3.50E-08	2.08E-09
(+ 6) (em/ 6)		512 00						0.001 00	
Average LNAPL Relative Permeability (k _{ro})	2.63E-02	1.19E-02	4.56E-04	2.08E-04	1.13E-07	1.30E-04	2.07E-06	2.67E-05	2.10E-03
Average LNAPL Conductivity (K _o) - (cm/s)	2.69E-06	1.21E-05	4.68E-07	2.13E-08	1.16E-09	1.33E-07	2.12E-10	2.74E-08	2.16E-08
Average LNAPL Mobility (M_o) - (cm/s)	2.89E-05	1.96E-04	2.99E-05	1.42E-06	1.26E-06	1.17E-05	6.66E-08	3.50E-06	5.88E-07
Average LNAPL Velocity (V _o) - (cm/s)	1.44E-07	9.79E-07	1.49E-07	7.11E-09	6.28E-09	5.85E-08	3.33E-10	1.75E-08	2.94E-09

Notes:

(1) - LNAPL relative permeability calculation for sands based on Burdine Equation 2.26 and Equation 2.27, and for silts based on Mualem Equation 2.28 in American Petroleum Institute (API) Publication Number 4729, *Models for Design of Free-Product Recovery Systems for Petroleum Hydrocarbon Liquids*, August 2003.

(2) - Highlighted data input values were based on laboratory test results for Site-specific soil and LNAPL samples.

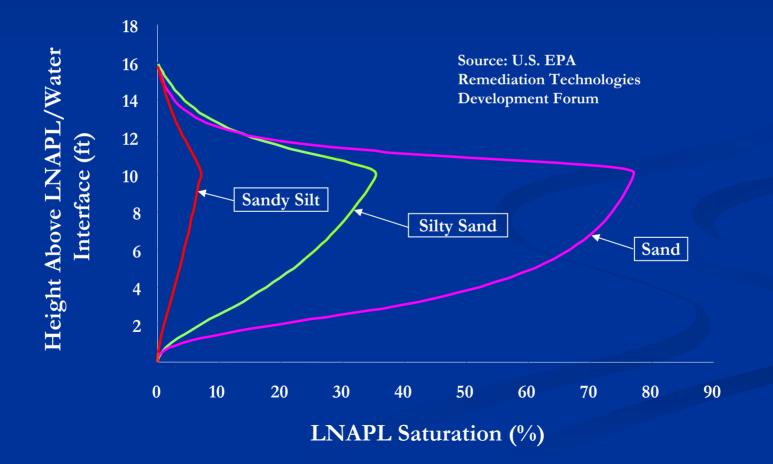
(3) - Hydraulic conductivity water values based on laboratory grain size analysis and listed hydraulic conductivity values in Freeze and Cherry. 1979. *Groundwater*, Table 2.2, p. 29. Prentice Hall. 604 p. (coarse sand - 0.1 cm/s; medium sand - 0.01 cm/s; fine sand - 0.001 cm/s; silt - 0.0001 cm/s)

Based on calculation results, only 1 of the 24 locations exhibited an LNAPL velocity in excess of $1 \ge 10^{-6}$ cm/s, which represents the *de minimis* mobility threshold for LNAPL (ASTM, 2005); Upon re-calculation using assumed <u>average</u> LNAPL saturations, none of the 24 locations exhibited an LNAPL velocity in excess of 1 x $10^{-6} \text{ cm/s}.$

LNAPL Mobility Conclusions

Based on laboratory measured LNAPL saturations and residual saturations, it appears that 4 locations within the interior portions of the LNAPL areas exhibit a significant potential for inherent mobility;

Based on LNAPL mobility calculations, it appears that 1 interior location exhibits an LNAPL velocity in excess of the *de minimis* mobility threshold for LNAPL (ASTM, 2005);
 Overall LNAPL areas appear to be stable.


- Operated a high vacuum multi-phase extraction (MPE) system in one of the LNAPL areas for 2 months (see Cushman et al., RemTech 2005, for description of system);
- Extraction area included area of maximum LNAPL mobility;
- Recovered approximately 85,000 gallons of water but less than 40 gallons of LNAPL, despite an LNAPL in-well thickness of 6 feet.

- Ran LNAPL recoverability simulations using the API Interactive LNAPL Guide Version 2.0 software;
- Assumptions:
 - LNAPL type diesel;
 - Soil types medium sand, silt, and clay;
 - LNAPL area dimensions 200 feet by 200 feet;
 - Apparent LNAPL thickness 8 feet (model assumes 8 feet LNAPL thickness across the entire 200 feet by 200 feet area);
 - Recovery time 1 year; and
 - Recovery system high vacuum extraction applying 18"Hg to 30 extraction wells.

API Model simulation results:

Soil Type	Estimated 1-year LNAPL Recovery (gallons)						
Medium Sand	295,000						
Silt	4,100						
Clay	130						

10 ft Monitoring Well Thickness and a Diesel Fuel

- API model simulations demonstrate that significant in-well thickness (8 feet in this example), particularly in a fine textured soil (silt, clay), does not necessarily mean that the LNAPL is recoverable.
- Evaluations suggest that inherent LNAPL mobility in a given area will not necessarily translate into a high degree of recoverability.
 LNAPL recoverability is best tested with sitespecific and technology-specific pilot studies.

Regulatory Feedback

LNAPL Mobility Evaluation Report yet to be submitted to U.S. Environmental Protection Agency (U.S. EPA).

Acknowledgements

The authors wish to thank General Motors Corporation for their contributions to this paper and to the ongoing LNAPL evaluation efforts.