Phytoremediation as a Technology for Both Risk Management and Remediation at a Former Herbicides Production Site

Catherine Creber

Remediation Leader, Dow Chemical Canada, Inc.

History of Herbicide Production Area

 Start-up of herbicide operations in 1961

- 2,4-D
- chlorophenols

 Shut-down of herbicide operations in 1980

Demolition of equipment

- early 1980s
- asphalt cover

Former Herbicides Plant Post equipment demolition

Key Issues

- Soil contamination
 Groundwater contamination
 Asphalt cover
- 2,4-D
- Phenols
- Chlorinated Organics

Groundwater Analytical Data - 2,4-D ppb

400	to	1,900
40	to	400
8	to	40
4	to	8
<4		

Soil and Groundwater Management Strategy

• Understand Risks

- Characterization
- Fate and Transport
- Risk Assessment
- Apply Risk Management Systems
 - Mitigate contaminated groundwater movement
 - Manage exposure to personnel
- Remediation (cleanup) of contaminants in groundwater and soil

Phytoremediation-Risk Management *and* Remediation

- Cost effective and efficient control of groundwater movement
- Biodegradation by plants and their associated root-zone microbial populations
- Addition of oxygen to degrade site contaminants
- Manage contamination in-situ
 - no waste generation
 - o no energy use
 - o sustainable

Phytoremediation Pilot Study

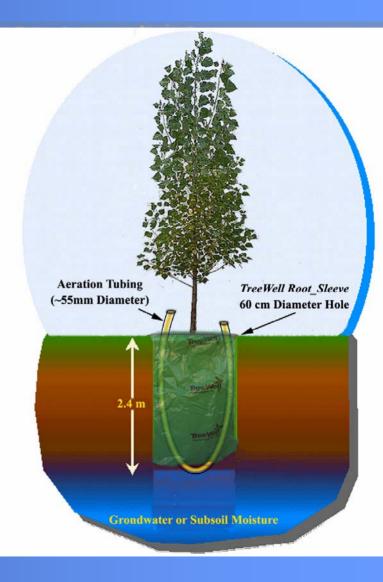
Hydraulic Control

Contaminant Reduction

Phytoremediation Technology Research

Phytoremediation Pilot Chronology

- Initial Plant Viability Test (2002)
 - Two plots with a total of 16 trees and grasses
 - o 6 species of trees, 4 of grasses
- Phyto Pilot Study (June 2005)
 - o 475 trees, 6 species
 - 100+ monitoring installations
 - designed research studies
 - monitoring program
 - analytes, tree health, water level data


Phytoremediation Pilot Design Parameters

Sufficient quantity of trees to create drawdown

- Direct trees to deeper groundwater extraction
- Protect Tree roots from high herbicide concentrations
 - TreeMediation[®] System
- Mixed tree variety to evaluate viability
- Three experimental designs

Specific Planting Technology

- Patented phytoremediation technology Treemediation ®
- Water flows upward through media in TreeWell® Root_Sleeve
- Biodegradation prior to tree root uptake
- Targets deeper groundwater

Tree Planting Locations

- Strategic grid system
- Higher concentrations
- 4.5 meter centres

June 17, 2005

Asphalt was jack hammered and soil augered.

All tree locations & in-well monitoring installed

Planting process underway.

Phytoremediation Research Plots

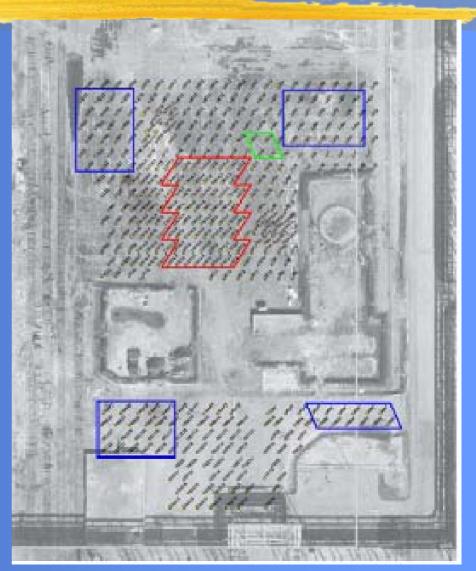
Species Study

4 plots, 6 species with 4 replicates of each type

Area of Influence Study

• 4 willows, 4 monitoring wells with each willow

Treatment Effectiveness Study

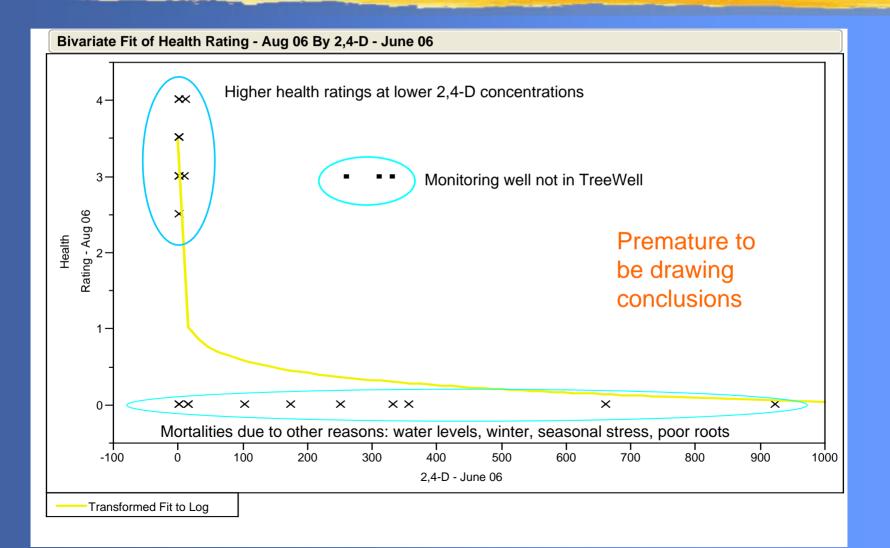

o varying soil mixture, w or w/o air tube, w or w/o sleeve

Phytoremediation Research Plots

Treatment Effectiveness Study

Species Study

Area of Influence Study

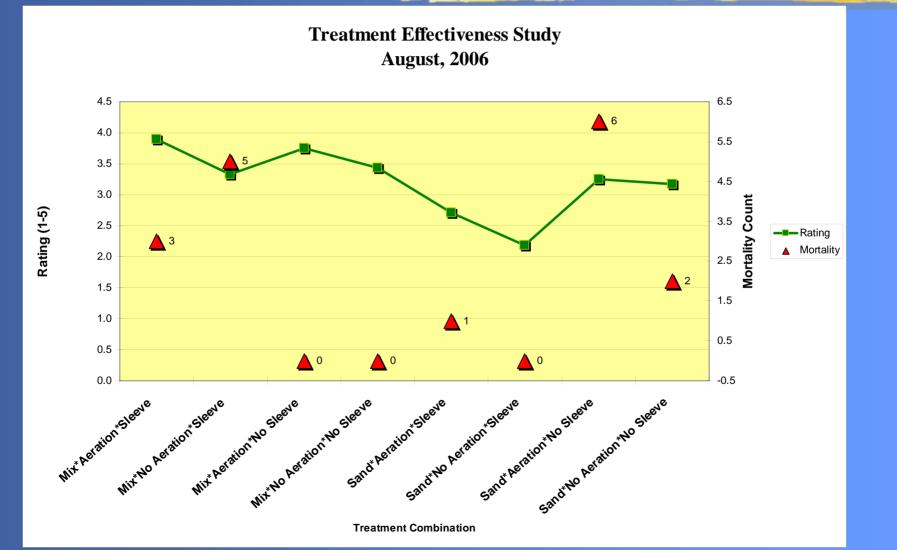


Phytoremediation Research Results

Species Study – Tree Viability, overall mortality 34%

- Green ash zero mortality, good viability results/lower water use
- Aspen acceptable viability results/medium water use
- Willow and poplar low to moderate viability results/robust water use
 - High water levels confound results for willow & poplar
 - Evidence of high concentration effects for willow
- Birch & hackberry low vigor rating, low survival rate
- Russian olive (2002) promising species

Tree viability


Panoramic View Phyto Pilot Project – Year 2

Phytoremediation Research Results

Area of Influence Study
 Willow mortality- 100%
 Likely due to high 2,4-D concentrations
 No conclusions - artificially high water table is confounding results

Phytoremediation Pilot Treatment Effectiveness Study

Phytoremediation Pilot Hydraulic Control Study

- Hydraulic drawdown due to tree uptake no conclusions yet
- Artificially high water table confounding results

• Average depth to groundwater in $2002 = 2 \text{ m} \pm$ • Actual encountered in 2005 & 2006 = 0.5 m \pm

Tree establishment and viability is inhibited

2002 Phyto Demonstration

 Limited planting to show if plants viable in these site conditions

Water table levels low in 2002

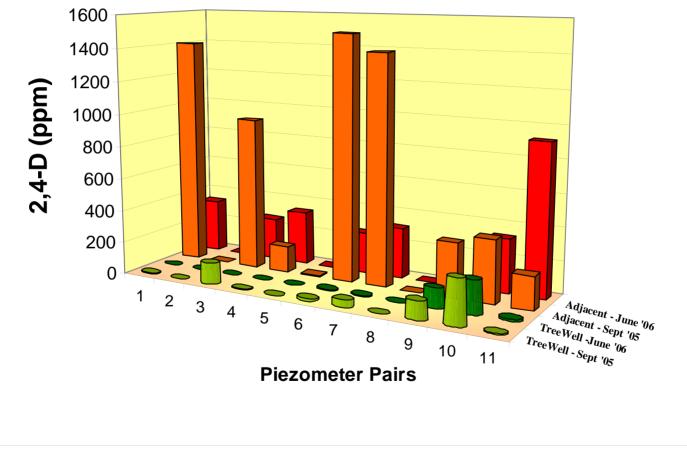
Mortality high, but a few are thriving

2002 Plantation Areas

Between-Tree Monitoring Well # 2

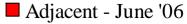
Between-Tree Monitoring Well #1

Phytoremediation Results Groundwater Data


	Between Trees Monitoring Well # 1 mg/L			Between Trees Monitoring Well #2 Mg/L		
	07/24/2002	09/14/2005	06/06/2006	07/24/2002	09/14/2005	06/06/2006
2,4 – D	300	0.009	0.0058	290	0.13	1.3
3 & 4 - Chlorophenol	130	1.5	0.4	52	7.6	3.7

2005 Phyto Pilot Paired Piezometers locations

2,4-D Comparison of Paired Piezometers TreeWell Piezometer vs Adjacent Piezometer


2m spacing (0.5m for Pairs 9-11)

TreeWell - Sept '05

TreeWell -June '06

Adjacent - Sept '05

Monitoring Plan

Tree health assessment

• 3 times/year

Groundwater levels

8 times/year

Groundwater sample collection and analysis

- o 2 times/year
 - VOC's, chlorophenols, herbicides
 - Field parameters (pH, temp, ORP, conductivity, D.O.)

Next Steps in Pilot Study

- 1. Collect soil data to compare with 2002 data
- 2. Collect representative leaf and stem samples for nutrients and herbicides analysis
- 3. Replant dead areas in spring 2007 (perhaps 2 tree varieties/hole)
- 4. Plant control area for species evaluation (spring 2007)
- 5. Harvest representative number of trees in fall 2007 to evaluate root growth

 Phytoremediation can be an effective risk management system

Phytoremediation is a remediation technology

 Site conditions are a challenge but not insurmountable

Contributors to Project

Edward Gatliff, Applied Natural Sciences, Inc. Frank A. Manale, Toxicological & Environmental Associates, Inc. David Wandor, The Dow Chemical Company Joanne West, Dow Chemical Canada, Inc.

Questions?

Phytoremediation Pilot Project

Work in Progress

Trees have been planted here to study the long-term improvement of the soil and groundwater through the use of this innovative remedial technique.

