REMTECH 2006

A Defensible and Unbiased Approach for Confirming Effective Removal of Contaminated Soil for Remedial Excavations

> by James Carss, John Agar & Tai Wong

Background...1

x To confirm effective cleanup for a remedial excavation a confirmatory sampling plan is necessary.

x However, not all Provinces have provided guidance on confirmatory sampling plans...

Background...2

\mathbf{x} For example:

 BC – 10 m grid for walls and floor of UST excavations

Ontario – 5 m grid for walls,
 10 m grid for floor of UST excavations

x Rationale for these grid requirements is not provided.

Environmental Sampling Plans

 x Usually based either on:
 • Professional judgement and "expert" opinion

 $\mathbf{x} \mathbf{Or}$

Statistically defensible decisions

Judgemental Sampling

x Strengths:

- Focussed can avoid areas of no apparent interest
- Greater control over sampling costs
- **x Weaknesses:**
 - Depends on quality of judgement
 - Variability in quality and reliability
 - Difficult to defend statistically how many samples should be taken?

Statistical Sampling Plans...1

x Strengths

- Statistics based valid inference to population parameters, e.g. mean and variance
- Can quantify performance probability of detection or confidence limit
- Can optimize design balance between uncertainty and cost

Statistical Sampling Plans...2

\mathbf{x} Weaknesses

- More complicated process more difficult to explain
- Usually more samples higher costs
- Cannot be used for point sources, e.g. PHC-impacted groundwater plume
- Limited to populations where values are not spatially or temporally correlated o'connor Associates

A Short History of SSP

- **x** 1948 Freeman et al. Sampling Inspection
- x 1972 Singer. ELIPGRID a FORTRAN program to locate elliptical hot-spots
- $_{\rm X}$ 1977 1982 PNL TRAN-STAT Bulletins
- x 1984 Zirschky & Gilbert. Detecting hot spots at hazardous-waste sites
- x 1987 Gilbert. Statistical Methods for Environmental Pollution Monitoring – The BOOK!
 x 1990s USEPA / DOE DQO Process

Statistically Defensible Decisions - Procedure

- 1. Develop a conceptual site model
- Formulate null hypothesis, H₀:
 e.g. "Site is dirty" (Regulators view)
- Arrive at decision by testing H₀
 statistically
- 4. Bound decision errors
- 5. Obtain an adequate number of samples and sample locations

VSP

A tool for developing statistical sampling plans:

Visual Sampling Plan (VSP)

VSP – Visual Sampling Plan

- x Tool to develop systematic statistics-based sampling plans
- $\mathbf x$ Developed by PNNL in 2001
- **x Currently Version 4.6b**
- x For soil, sediment, surface sampling not groundwater (yet)
- x Web site: http://dqo.pnl.gov/index.htm
- x VSP training courses held a few times per year

VSP 4.6

x Addresses part of the 7-step EPA DQO process:

- Specifies limits on decision errors
- Optimizes design of sampling plan
- **x Determines:**
 - How many samples are needed?
 - Where should the samples be taken?
- **x** Performs some statistical evaluations

How to Use VSP?

- x Examples to illustrate developing a sampling plan:
 - 1. Sampling remedial excavation walls to determine probable "hot spot" size
 - 2. Determining grid size for given "hot spot" size & probability of detection
 - 3. Sampling a study area for remedial excavation requirements

Example 1 – Excavation Wall for UST Removal

$\mathbf x$ Plan View:

Approximately 40 m x 40 m
Wall height:
6 m

Ex.1 - Grid Sampling on Walls

Room 1

x Sample spacing: 2 m (h) x 0.6 m (v) (standard O'Connor practice)

Ex.1 - Performance of Grid

 \times Using a 2 m x 0.67 m grid, we can detect circular hot spots 0.97 m radius (min.) with a probability of 95% **x** Area of hot spot $= 2.95 \text{ m}^2$

Solve For: Grid Spacing / # of Samples / Total Cost Probability of Hit Hot Spot Size nput: Grid Spacing (see Grid page) Number of Samples*: 737 Total Cost: \$ 369500.00 Probability of Hit: 95.00
 Grid Spacing / # of Samples / Total Cost Probability of Hit Hot Spot Size nput: Grid Spacing (see Grid page) Number of Samples*: 737 Total Cost: \$ 369500.00 Probability of Hit: 95.00
 Probability of Hit Hot Spot Size nput: Grid Spacing (see Grid page) Number of Samples[*]: 737 Total Cost: \$ 363500.00 Probability of Hit: 95.00
 Hot Spot Size nput: Grid Spacing (see Grid page) Number of Samples*: 737 Total Cost: \$ 369500.00 Probability of Hit: 95.00
nput: Grid Spacing (see Grid page) Number of Samples [*] : 737 Total Cost: \$ 369500.00 Probability of Hit: 95.00
 Grid Spacing (see Grid page) Number of Samples*: 737 Total Cost: \$ 369500.00 Probability of Hit: 95.00
Number of Samples*: 737 Total Cost: \$ 369500.00 Probability of Hit: 95.00
C Total Cost: \$ 369500.00
Probability of Hit
FTODADIIILY OF FTIL. TOO. 00 78
-

* Based on a total sampling area of 1000.00 meters^2.

Cancel

Close

- 12 -

Apply

Help

Grid Size vs. Probability of Detection

O'CONNOR ASSOCIATES

Example 2 – Grid to Locate Hot Spots

x To locate hot-spots

 ≥ 1.0 m radius
 at 90% probability
 x Requires a square
 grid of 1.8 m spacing
 x And 2,332 samples

Area = 7500 sq.m.

Ex. 2 - Refinement to the Sampling Grid

x If p(A) : (probability of encountering a sample > criterion) can be determined a priori

x Grid spacing can be modified based on conditional probability (Gilbert, 1987, p. 127)

Use of a priori probability, p(A)

x To locate 1.0 m radius hot spots in area of 7500 m² with 90% probability:

p(A)	≥50%	20%	15%	10%
Grid Spacing (m)	1.8	2.4	3.0	10.5
No. Samples	2,332	1,302	835	73

Example 3 – Surficial Excavation for Metal Impacts

x Purpose:

 To determine the extent of a surficial excavation to remove metal impacts from top 0.3 m

- **x Performance criteria:**
 - Hot-spots to a maximum size of 1 m radius will be removed with a 90% certainty
 O'CONNOR ASSOCIATES

Example 3 - Procedure

- x Sample site to determine a priori probability p(A)
- **x** Determine actual sampling grid size
- **x** Establish step-out sampling methodology
- **x** Complete sampling and analyses
- x Check to ensure frequency of exceedance is not > p(A)
- **x** Lay out area to be excavated

A Priori Probability

x Procedure

- Carried out pilot test using a 10 m square grid
- Obtained samples in the top 0.3 m using a Geo-probe rig and sampler
- Results from
 laboratory analyses
 indicated p(A) = 15%
 - Therefore a 3 m grid would be sufficient

р(А)	≥50%	20%	15%	10%
Grid Spacing (m)	1.8	2.4	3.0	10.5

Step-Out Sampling Procedure

- Initial Sampling Grid
 Point without
 Chemical
 Exceedance
- Initial Sampling Grid Point with Chemical Exceedance
- Additional Step-Out Sampling Point

Establish Extent of Excavation

- **Sampling Grid Point without Chemical Exceedance**
- Sampling Grid **Point with Chemical Exceedance**

Region to be Excavated

Concluding Remarks....1

- Statistical sampling plans can be used to assist in reaching excavation goals
 VSP is a useful tool for developing statistically defensible sampling plans
 Current limitations include:
 - Only applicable for areal impacts

Concluding Remarks...2

 \mathbf{x} Need to be used with appropriate judgement and knowledge - don't accept results blindly **x REMEMBER** -GIGO

References...

"It is easy to lie with statistics, but easier to lie without them."

- Frederick Mosteller, founding chairman of Harvard University's statistics department

Thank you!

Example 2 – Remedial Excavation Requirements

x Area: 7500 m²
x 200 m long
x 70 m wide (max.)

Ex.2 Step 1 –

Import .dxf

\vdash					
Ó	10	20	30	40	50 m

Ex.1 Step 2 – Sampling Goals

Мар	Edit	Sampling Goals Tools Options Room View	Wi	ndow Help
	l m l,	Compare Average to Fixed Threshold	Þ	Can assume data will be normally distributed 🔸
	Simp	le random sampling (Wilcoxon signed ranks test) –		Data not required to be normally distributed 🔸
C	Syste	ematic grid sampling (Wilcoxon signed ranks test)		Data from specified distribution (Simulation) 🔸
_	Simp	le random sampling (MARSSIM sign test)	ľ	
	Syste	ematic grid sampling (MARSSIM sign test)		
		Compare Proportion to Reference Proportion	•	
		Estimate the Proportion	Þ	
		Locating a Hot Spot	Þ	(
		Find UXO Target Areas	Þ	
		Assess Degree of Confidence in UXO Presence	۲	
		Non-statistical sampling approach	۲	
		Establish Boundary of Contamination	۲	

Ex.2 Step 3 – Decision Parameters

Ex.2 Step 4 - Sampling Grid x 86 locations \times 10.2 m \triangle grid **x Largest unsampled** area: 5.7 m radius circle \times 5.1 m radius hotspot at p = 90%

Ex.1 – Step 5 DPGD

Number of Samples x Based on a symmetric (not necessarily normal) population x Changes with α , β and s.d. Proportional to (s.d.)² x Inversely proportional to width of gray region (δ) – uncertainty of the threshold value

Locating Hot-Spots

x To locate a hot-spot 1.0 m radius at p=90%
x Need a 1.8 m square grid
x ~2300 samples

x However ...

Example 2 – Quasi-Random Sampling

Sampling Goals in VSP

- **x** Compare sample mean to a criterion
- x Compare sample mean to a referenced average
- **x** Estimate the population mean
- x Construct confidence interval on the mean
- **x** Detecting hot spots
- x ...(7 additional sampling goals)

Probability of Detection:

95%

Grid Size		Hot-S	Unsampled		
x (m)	y (m)	Grid Area	Min. Radius (m)	Area (m2)	Area (m2)
0.67	2	1.34	0.97	0.74	3.01
2	2	4.00	1.20	1.13	5.67
4	4	16.00	2.40	4.52	24.01
5	5	25.00	3.00	7.07	37.64
10	10	100.00	6.00	28.27	154.10

