

Delivery Methods for Optimizing in situ remediation with Treatment Amendments

Outline

- In situ Remediation why the need?
- Trends
- Drivers for ISR
- Advantages/Benefits
- Amendment Delivery Assessment Tool
- ISR Verification

Technology Trends

 Principal Management Strategies: In-situ (always on-site)
Ex-situ (either on- or off-site)
Increasing use of innovative Remedial Technologies

 Growing preference for in-situ approaches and niche technologies for specialized chemicals which cannot be treated by other remediation technologies (e.g.: PCE/TCE, PCBs)

Key Remediation Market Drivers

Principal market forces that drive remediation markets around the world, including in Canada (Industry Canada FCSW, 2006):

Regulations

- Corporate liability
- Property transaction liability
- Economics
- Damage to corporate reputation
- Public stakeholder pressure

Growing need for Remedial Technologies that are ...

- Faster
- Cheaper
- More effective (destruction vs. transfer)

More sustainable ("small footprint")
In Situ (non-disruptive)
ITRC, US NSF, EPA, IC, SDTC, EU, Corp

But ...

Understanding of ISR using treatment amendments needs to be much improved, especially:

- Selection of appropriate Amendments
- Distribution of Amendments (CONTACT)
- Incompatibilities with Geology
- Effectiveness Verification

Amendment Delivery Assessment Tool

- Systematic approach to ISR using Treatment Amendments:
- Geology
- Nature of Contaminant
- Remedial Approach
- Treatment Amendment
- Delivery System & Equipment
- Remedial Effectiveness Verification

Elements for Success

Treatment Amendments

A	MENDMENT	EXAMPLES	PROCESS	CONTAM.
Pe Ch (p	roxygen iemicals owder slurry)	Calcium & Magnesium Peroxide	Oxidation and Aerobic Bio- degradation	Residual Phase and Dissolved HCs
Ze (s	ro Valent Iron olids slurry)	CGI, MSI, NSI	Abiotic Reductive Dehalogenation	Chlorinated solvents
Ze (s	olites/Humates olids slurry)	Clinoptilolite/ Leonardite	Cation Exchange/ Adsorp & Chelatn	Salts, metals, hydrocarbons
Su (s	rfactants olution)	Non-ionic, alcohol based	Reduced IFT; enhanced Bio- availability	Residual or Free Phase HCs

Amendment Delivery

- Passive (e.g. gravity)
- Advection and Dispersion : GW Velocity
- Pressure injected (below frac P)
- Pore space permeation: Ø, % fines
- Pressure injected (above frac P)
- Discrete fractures: K, P_f

Which Delivery System?

- Remedial Objective:
- Injection only? One-time or multiple events?
- Injection and Permeability Enhancement

- Physical properties of Amendment
- solution, slurry, solids density, size, abs.vol.
- Properties of receiving geology
- Clay content and mineralogy, GSD, K, density, cohesion, groundwater geochemistry

Simplified "Direct Push" Injection (Permeation)

Permeation Injection

Only works if amendment can pass through the mean pore throat diameter of a soil, i.e. when:

Amendment Particle size, Ps < $\sqrt{K/7}$

Ps in microns and K in md (Haris and Odum, 1982)

Otherwise, you are fracturing!!!

Fracture Emplacement of Amendments

Plan View of Amendment Distribution

FRACTURE EMPLACEMENT

PERMEATION INJECTION

Low Density Solid Bioamendment (Chitin)

FRAC RITE ENVIRONMENTAL LTD.

High density Solid Amendment (ZVI)

Base Gel (Guar) carrier fluid

- Water based,
 - natural or hydroxyl propyl guar polymers
- pH buffer & clay stabilizer
- Crosslinker
- Breaker
- Sand proppant
- Amendments

In Situ Amendment Delivery Requirements

Mobile mixing tank and pumps Drilling equipment **Downhole tools** Instrumentation Geophysical mapping equipment

Verifying Amendment Distribution

Visually: Excavation, soil coring

Geophysics: Tiltmeters, GPR, EC

Indirect methods: Tracers

Effects on GW geochemistry

Verification of fractureemplacement in excavation

Verification of amendment delivery by soil coring

Verification of amendment distribution by tiltmeter geophysics

Geochemistry for Anaerobic Reductive Dehalogenation of TCE

Abiotic Reduction of Carbon Tetrachloride

Groundwater Geochemical Parameters for ZVI Perimeter Well MW 9B -- Carbon Tetrachloride

- Cost-effective in situ remediation using treatment amendments requires careful consideration of compatibilities between geologic conditions, delivery methods, and amendment-contaminant interactions.
- Verification techniques improve ability to optimize remedial performance and effectiveness monitoring