Assess

Design

Implement

Remediation Technologies Symposium 2006 Banff, Alberta

Biogenie

Site Remediation Solutions

Remediation of 20,000 m³ of Hydrocarbon-Impacted Soil at a Former Well Site Using the Biopile Process

Guillaume Bédard¹

¹Biogenie S.R.D.C. Inc., Calgary Office, Alberta

Site Remediation Solutions

Site History

- Former well site
- Lease established in the late 1960's
- A flare pit, mud pit, and aboveground storage tanks were present on site
- Abandoned site located southwest from Red Deer in an agricultural area

Additional Site Assessment

Objectives:

- Additional site assessment to complete the delineation of the hydrocarbon plume
- Confirm the depth of impact identified in a previous environmental assessment
- Select the most efficient remediation strategy

Remediation Objectives

- Land use in the area is agricultural
- Soil defined as fine-grained

Contaminants	Surface Soil Criteria (mg/kg)	Exposure Pathway	
Benzene ⁽¹⁾	0.073	Protection of Potable Groundwater	
Toluene ⁽¹⁾	0.86	Protection of Potable Groundwater	
Ethylbenzene ⁽¹⁾	0.19	Protection of Potable Groundwater	
Xylenes ⁽¹⁾	25	Protection of Potable Groundwater	
Benzo (a) pyrene ⁽¹⁾	4.3	Human Dermal Contact	
PHC F1 (C ₆ -C ₁₀) ⁽¹⁾	260	Soil Contact (plants and invertebrates)	
PHC F2 (C ₁₀ -C ₁₆) ⁽¹⁾	900	Soil Contact (plants and invertebrates)	
PHC F3 (C ₁₆ -C ₃₄) ⁽¹⁾	800	Soil Contact (plants and invertebrates)	
PHC F4 (C ₃₄ -C ₅₀₊) ⁽¹⁾	4,000	Soil Ingestion (livestock)	

(): Alberta Soil and Water Quality Guidelines for Hydrocarbons at Upstream Oil & Gas Facilities (AENV, September 2001)

Findings of the ESA

- Delineation of areas of concern for BTEX and PHC (F1 to F4) completed:
 - Former Flare Pit (14,000 m³ in situ)
 - Mud Pit (6,000 m³ in situ)
- Depth of impact was confirmed at 4 m in the Mud Pit and 9 m in the Flare Pit area
- Groundwater exceedances for hydrocarbons

ESA Results – July 2004

Site Specific Challenges

- Proximity of land owners (noise, dust, and air quality)
- Lease slopes to a nearby river
- Large volume of impacted material
- Depth of impact (down to 9 m in Flare Pit)
- Limited space available on-site
- High concentrations of PHC
- Segregation of impacted soil
- Winter installation and start-up

Proposed Strategy

Advantages

- 1. Soil treatment to Tier 1 criteria unconditional closure
- 2. Improved groundwater quality
- 3. Maximize space available
- 4. Minimize soil handling
- 5. Minimize use of landfill and backfill
- 6. Increased safety by decreasing truck traffic in the vicinity
- 7. Management and treatment of air issues (reduced VOC emissions to a minimum)
- 8. Proven technology (biopile)
- 9. Contract (pay for performance)

Treatability Study

Treatability Study (cont.)

Parameter	Initial Mean Concentration (mg/kg)	Final Mean Concentration (mg/kg)	Reduction Rate (%)	Target Rate
PHC-F1 (C6-C10)	674	19	97	260
PHC-F2 (>C10-C16)	2,785	430	85	900
PHC-F3 (>C16-C34)	2,545	1,260	50	800
PHC-F4 (>C34)	944	438	54	4,000

Remediation Strategy

Objectives:

- Complete excavation, segregation, treatment and backfilling of 25,000 m³ of soil within a restricted area of 12,000 m², while minimizing soil to be landfilled
- Treatment of air emissions and process water
- Complete the project within an 18-month timeframe

Remediation Strategy / Methodology

- Additional site assessment
- Removal of remaining infrastructures
- Excavation and segregation of topsoil and clean overburden
- Construction of treatment area Phase I
- Excavation, segregation, and backfilling of mud pit area
- Construction of treatment area Phase II
- Excavation, segregation and stockpiling of flare pit area
- Segregation of highly impacted soil and pre-treatment
- Treatment start-up for top layer

Remediation Strategy / Methodology (cont.)

- Backfilling of treated material
- Treatment start-up for bottom layer
- Backfill of treated material
- Disposal of highly impacted soil to landfill

Treatment Monitoring

Results:

- Air emissions were treated through a biofilter
- Analytical results showed VOC reductions of nearly 80%
- Air samples collected at the site boundaries showed concentrations below the ambient air quality guidelines
- Water samples collected in the process water tank prior to release showed concentrations below applicable guidelines

Project Results

Parameter	Initial Mean Concentration (mg/kg)	Final Mean Concentration (mg/kg)	Reduction Rate (%)	Target Rate
PHC-F1 (C6-C10)	293	27	90	260
PHC-F2 (>C10-C16)	1,336	93	93	900
PHC-F3 (>C16-C34)	1,134	256	77	800
PHC-F4 (>C34)	270	202	25	4,000

Project Results (cont.)

Treatment Pad as Built

Sampling Pattern

Conclusion

Overall:

- Safety: no recordable incidents
- Quality: objectives for soil, water, and air treatment were achieved
- Cost: 25% less than landfill
- Time: 18 months
- Overall: 100% of the objectives were achieved

There are very limited reasons that can justify not looking into the recycling of soil, air, and water

