The Use of In-Situ Electrokinetics to Remediate Salt-Impacted Soil and Groundwater

Anjum Mullick, Komex International Ltd. Remediation Technologies Symposium 2005 October 20, 2005

K KOMEX

Partners

- Komex International Ltd.
- Ground Effects Environmental
- Alberta Infrastructure/Transportation
- Industrial Research Assistance Program (IRAP)

Presentation Outline

- Background
- Principles of Electrokinetics
- Laboratory Study
- Pilot Study
- Conclusions and Future Studies

Salt Contamination

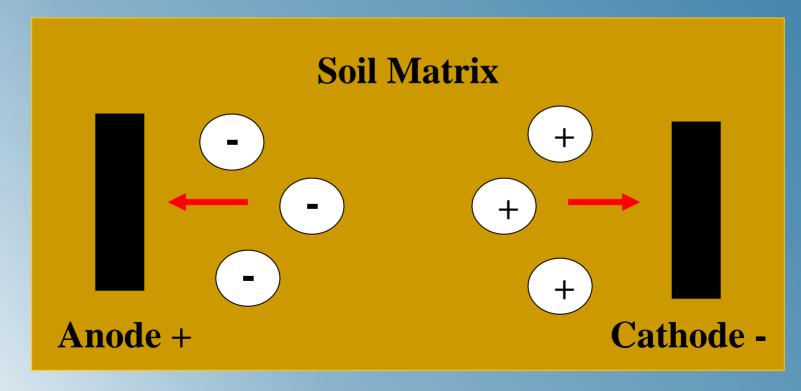
- Sources of Salt Contamination:
 - Oil and gas production (produced water)
 - Salt/sand processing and storage facilities at highway maintenance yards
 - Rendering plants
 - Run-off from snow-removal dumps
- What is liability?
 - Millions of dollars? Billions?

Salt Contamination

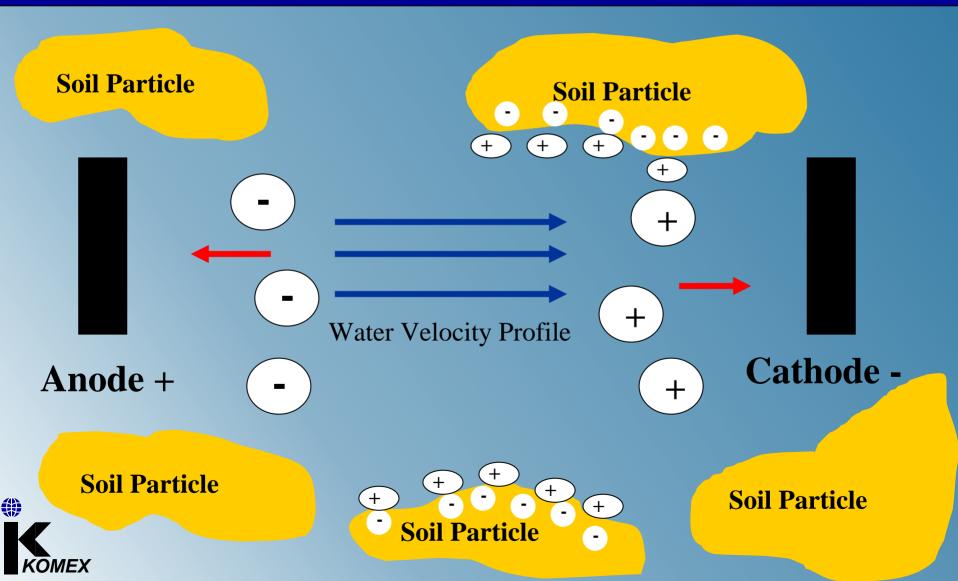
IMPACTS:

- Limited or no plant growth
- Destroy topsoil (dispersion of clay)
- Impact groundwater
 REMEDIATION:
- Excavate and landfill disposal
- Groundwater extraction
- Soil amendments
- Risk Management

Background


- Past research focus on heavy metal contaminants; some chlorinated solvent and radionuclide research
- Limited research to date for salt contaminated soil and groundwater
- Electrokinetic remediation...take with a grain of salt!

In-situ process


۲

Electric field created in soil by electrodes

- Creating an electric field causes:
 - Electromigration
 - Electroosmosis
 - Electrophoresis
 - Electrolysis of water

Anode + $2H_2O \rightarrow 4e^- + O_{2(g)} + 4H^+$

Oxidation

рН Комех

Cathode - $2H_2O + 2e \rightarrow H_{2(g)} + OH^{-}$ Reduction pH

NaCl Chemistry

ANODE (+)

Negative ions migrate to anode (ie. increase in Cl⁻ concentration)

 $2H_2O \rightarrow 4e^- + O_{2(g)} + 4H^+$ Oxidation, pH decrease

 $Cl^{-} \rightarrow Cl^{-} + e^{-}$

Chlorine free radical

 $Cl^{\cdot} + Cl^{\cdot} \longrightarrow Cl_{2(g)}$

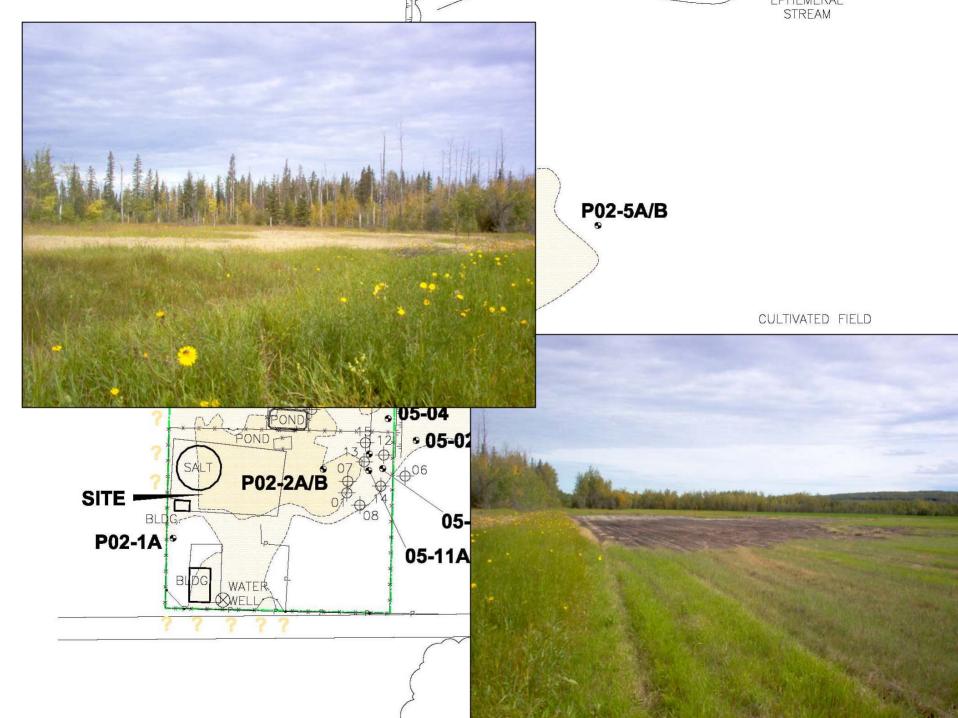
Chlorine gas

NaCl Chemistry

CATHODE (-)

Positive ions migrate to cathode (ie. increase in Na⁺ concentration)

 $2H_2O + 2e \rightarrow H_{2(g)} + OH^2$ Reduction, pH increase


 $Na^+ + e^- \longrightarrow Na$ Sodium metal

 $Na^+ + H_2O \longrightarrow NaOH + H_{2(g)}$ Hydrogen gas

Overall Concept

- Test site was a transportation yard with some assessment work completed
- Create an electrical field in a limited treatment zone (pilot study)
- Electrokinetics results in concentration of Na⁺ and Cl⁻ near the electrodes
- Electrokinetics and electrolysis result in an acid/base front propagating from the electrodes

Laboratory Study

- Series of soil cores ~ 60 cm long
- Soil collected from geophysical Zones A and B
 - Silty Sand, trace clay
- Saturated with NaCl solution
 - pH = 7.5

۲

- Cl⁻ = 4,800 mg/L
- Na⁺ = 3,400 mg/L
- EC = 14 dS/m
- Created different electrical fields
 - Voltage of 80, 160 and 300 volts
 - Initial current ~ 2 amperes

Laboratory Test Samples

Laboratory Test Layout

۲

Laboratory Soil Results – 80

Time (hours)	Electrode	рН	EC (dS/m)	CI (mg/L)	Na (mg/L)		
Initial Soil Conditions		7.6	10.0	3340	2310		
ZONE A							
24	Anode	6.4	9.6	3500	1430		
120	Anode	5.7	14.1	5900	60		
240	Anode	5.4	16.5	7380	54		
24	Cathode	8.7	3.6	1080	765		
120	Cathode	10.1	4.0	229	52		
240	Cathode	9.9	3.3	929	283		
ZONE B							

24	Anode	6.8	11.8	4250	2090
120	Anode	4.2	13.6	5560	93
240	Anode	5.5	13.4	5400	150
24	Cathode	9.7	14.5	3020	3520
120	Cathode	10.1	23.3	2990	7920
240	Cathode	10.1	7.9	208	2530

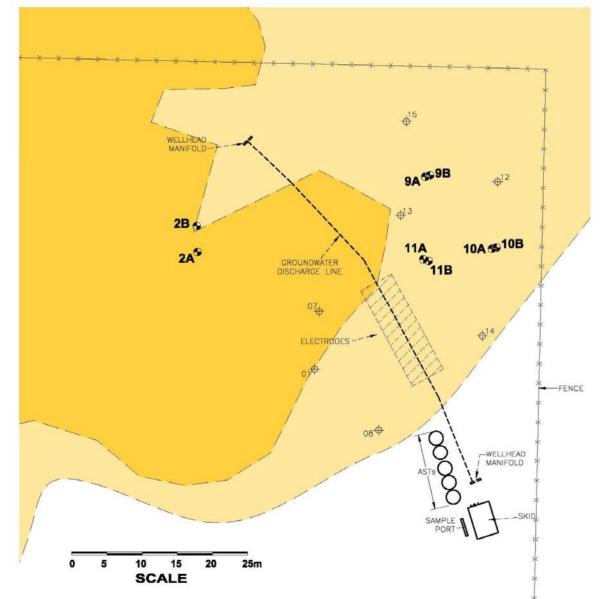
Laboratory Soil Results – 160 Volts

Electrode	рН	EC (dS/m)	CI (mg/L)	Na (mg/L)		
Initial Soil Conditions		10.0	3340	2310		
ZONE A						
Anode	6.2	9.6	3700	113		
Anode	5.1	16.5	7850	167		
Anode	5.9	15.2	6280	129		
Cathode	9.9	7.9	524	2420		
Cathode	10.0	4.8	690	1290		
Cathode	10.1	3.4	781	978		
ZONE B						
Anode	5.5	11.2	4430	1760		
	Anode Anode Anode Cathode Cathode Cathode	Anode 6.2 Anode 5.1 Anode 5.9 Cathode 9.9 Cathode 10.0 Cathode 10.1	Anode 6.2 9.6 Anode 5.1 16.5 Anode 5.9 15.2 Cathode 9.9 7.9 Cathode 10.0 4.8 Cathode 10.1 3.4	Anode 6.2 9.6 3700 Anode 5.1 16.5 7850 Anode 5.9 15.2 6280 Cathode 9.9 7.9 524 Cathode 10.0 4.8 690 Cathode 10.1 3.4 781		

	24	Anode	5.5	II.Z	4430	1/00
	120	Anode	4.1	10.0	3990	111
	240	Anode	3.9	21.6	9500	150
	24	Cathode	9.6	9.9	2250	2640
	120	Cathode	10.0	10.7	1590	3140
K	240	Cathode	10.4	21.1	465	8070

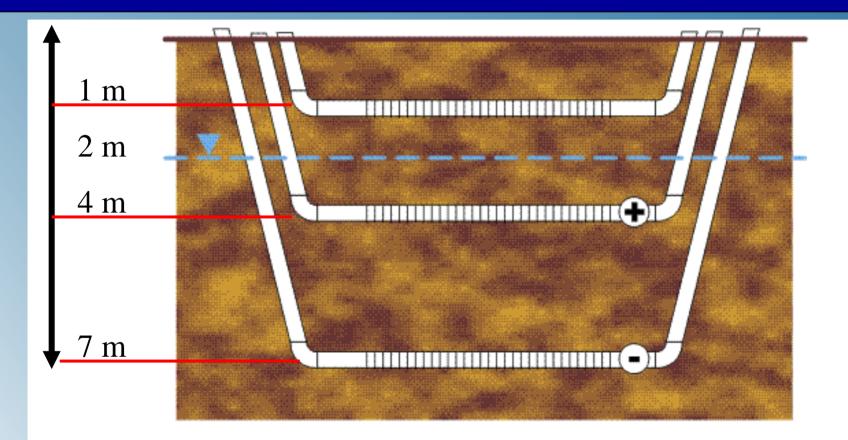
Laboratory Study Conclusions

- Migration of ions as expected (somewhat)
- Shift in pH as expected
- Increase in SAR at cathode, visible precipitate and/or dispersed clay
- Over time decrease in current (increase in measured electrical resistance V=IR)
- Higher voltage
 - soil heating (PVC melting)
 - measurable and visible gas formation
 - rapid increase in soil resistance



Considerations for Pilot Study

- Operate at lower voltage (< 100 volts)
- Measure for shift in pH and concentration in ions
- Extract concentrated water
- May require "clean" water flush and/or acid treatment
- Down- gradient pumping wells for potential mobilization of metals
- Vapour extraction for H_{2(q)} and Cl_(q)
- Install cathode (SAR problem) at depth



Pilot Study

Pilot Installation

Pilot Installation - Overview

Pilot Study - Sampling

Pilot Study - Sampling

Pilot Study – Interim Results

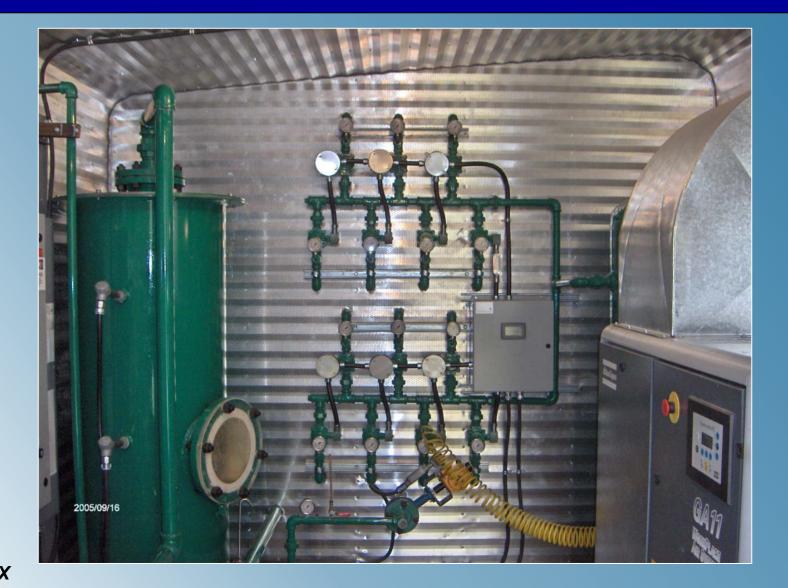
"Reports that say that something hasn't happened are always interesting to me, because as we know, there are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there are some things we do not know. But there are also unknown unknowns -- the ones we don't know we don't know." **Donald Rumsfeld**

Conclusions and Future Studies

- Highly complicated chemistry, coupled with variable soil and groundwater conditions
- Electrokinetics shows promise in the remediation of salt impacted soil and groundwater
- Must manage precipitate formation and dispersion of clay (decrease current and soil permeability)
- System must have mitigative measures to control potential dissolved metals migration

Conclusions and Future Studies

- System must have health and safety measures for Cl_{2(g)}, H_{2(g)}, pH and voltage
- Studies to determine optimal water flushing rate
- Post-pilot soil sampling
- Geochemical modelling



Pilot Study - Electrical

Pilot Study - Equipment

Pilot Study - Power

