Adaptive, Responsive, **Trusted**

Remediation of a Coal Waste Pile in Union Bay, BC SEACOR ENVIRONMENTAL INC.

Remediation of a Coal Waste Pile in Union Bay, BC

Tara Siemens, MET and Ian Mitchell, MSc, PGeo SEACOR Environmental Inc.

Outline

Site Description and History
 Environmental Investigations
 Problem Formulation/Screening RA
 Remedial Plan

Site Description

13 ha waste coal pile in Union Bay, BC Bounded to north and east by Pacific Ocean

Adaptive, Responsive, Trusted

WASTE COAL PILE

Sound

BANNES

Site Description

13 ha waste coal pile in Union Bay, BC Bounded to north and east by Pacific Ocean

Bounded to west by Hart Creek

Sound

BANNES

Site Description

- 13 ha waste coal pile in Union Bay, BC
 Bounded to north and east by Pacific
 Ocean
- Bounded to west by Hart Creek
- Future land use: residential/parkland

Site History Coal Processing Facility 1888 to ~ 1960

Historical photographs from BC Archive at www.bcarchives.gov.bc.ca.

Historical photographs from BC Archive at www.bcarchives.gov.bc.ca.

Historical photographs from BC Archive at www.bcarchives.gov.bc.ca.

Historical photographs from BC Archive at www.bcarchives.gov.bc.ca.

Environmental Investigations

- Waste Coal Pile and adjacent properties, Baynes Sound and Hart Creek
- Samples of waste coal, native soil, groundwater, sediment and surface water analysed for PCOCs
- PCOCs include metals, PAHs, sulphate
- ABA, kinetic testing and other geochemical parameters

Waste Coal Pile - Results

- Waste Coal: arsenic, copper, naphthalene and phenanthrene > standards
- Native soils < standards</p>
- Groundwater: cadmium,cobalt, copper, nickel, zinc and sulphate > standards for aquatic life; PAHs < standards</p>

Hart Creek - Results

Surface Water < criteria</p>

Sediment: PAHs and metals > criteria in 1 sample

Baynes Sound - Results

Waste coal present to > 30 m offshore
 Iron staining present in sediments north and east of coal pile in areas of groundwater discharge

Sediment: PAHs and metals > criteria

- 9 PAHs
- Arsenic, copper and mercury

Seep water: Metals > criteria

- Aluminum, cadmium, cobalt, iron, manganese, nickel and zinc
 - 10x's dilution of groundwater occurring during discharge to environment

Geochemistry

- Geochemical characterization conducted by SRK Consulting (Canada) Inc.
- Static and kinetic testing conducted
- Testing indicated that all material is potentially acid generating or is already acidic
- Geochemical Profile
 - Sulphide sulphur present throughout
 - Accumulation of sulphate within top 2 m
 - Increasing pH and NP with depth
- Under existing conditions, acidification expected to continue for decades to a century

Detailed Hydrogeology Assessment

Review of climate data Infiltration tests at pile surface Hydraulic conductivity tests at base of pile Analysis of tidal effects Physicochemical groundwater monitoring Assessment of groundwater flow Evaluation of pile water balance

Infiltration Test Results

- Infiltration rate at 20cm depth is 5x greater than infiltration rate at typical surface locations
- Infiltration rate at typical surface locations is 10x greater than highly compacted surface areas

Tidal Analysis

- Tidally induced groundwater fluctuations 1.5m adjacent to foreshore; absent 400 metres inland
- Intrusion of saline groundwater observed to 75m inland
- Upgradient third of pile not exposed to tidal flushing

Summary of Groundwater Flow

- Estimated groundwater velocity in coal waste is 100-150 m/yr
- Estimated groundwater velocity in underlying native soil is 15-25 m/yr
- Net groundwater flow direction is towards the ocean

Water Balance

Important Conclusions

- Upgradient third of pile unsaturated at the base
- Upgradient side of pile not recharged by Hart Creek
- Contrast in conductivity promotes seepage along interface at base of pile
- Baseflow flushing through pile is relatively small component of overall discharge

Problem Formulation/SLRA

- Based on pre-remediation conditions; comprehensive RA to be conducted post remediation
- Chemicals of Potential Concern for RA = parameters in different media > applicable standards/criteria

Human Health SLRA

- Non-cancer and cancer risks to Site users < 1E+00 and 1E-05
- Risks to seafood consumers <1E+00 and 1E-05

Problem Formulation/SLRA
Ecological RA
Marine species identified as primary receptors of concern

Primary assessment endpoints for Eco RA:

Bioassays for benthic and pelagic species
 Species composition and habitat quality
 Preliminary evaluation of endpoints conducted

Problem Formulation/SLRA

Ecological RA (cont.)

- Sediment bioassays:
 - for amphipod (E. estuarius) and polycheate (N. arenaceodentata)
 - one sample of six toxic to polychaete
- Groundwater and seep water bioassays:
 - for topsmelt (A. affinis), sand dollar gametes (D. excentricus) and oyster spat (C. gigas)
 - Preliminary results indicate lethality at 6%
- Abundant flora and fauna present in intertidal and subtidal, including extensive eel grass bed

Risk-Based Groundwater Remedial Targets

- Site-specific groundwater remedial targets currently being derived
 - Based on results of toxicity testing and literature review
 - Final remedial design will be based on groundwater remedial targets

Remediation Plan

- Waste coal subdivided into 4 different zones:
 - Main pile (focus of presentation)
 - Hart Creek deposit
 - Tidal Zone deposit
 - Submarine deposit

Distinct characteristics indicate that different remedial strategies required for each zone

Remediation of Main Pile Primary Considerations

Technical feasibility
 Cost and associated risks

Potential for economic benefits

Preference given to alternatives that provide a more permanent solution

Remediation of Main Pile Important Factors

- Pile forms a distinctly convex dome
- Coarse waste material results in a net downward flux of water

- Steep side slopes may destabilize over time as pile acidifies and cementation degrades
- Data indicates that direct revegetation is unlikely sustainable

Contaminant Release Mechanisms

- Wind Dispersion of the waste coal solids
- Leaching of metals by infiltrating water and runoff
- Leaching of metals by tidal effects
- Shore erosion by wave action in tidal and subtidal zone
- Erosion by stream flow in Hart Creek

Potential Control Measures to Reduce Metal Loadings

- Alkaline amendment to offset excess acid potential
- Measures to control oxygen ingress to the pile
- Reduction or elimination of infiltration of water

Primary Remedial Objectives

Minimize potential release of contaminants by wind blown dust

- Minimize release of soluble oxidation products to groundwater
- Restore coal pile to land use suitable for residential/urban park

Based on the above, the selected remedial alternative is a physical cover/cap

Cover Design Considerations

- Climatic water balance for the pile is net positive
- Main risk to low permeability cover is dessication due to wet/dry cycles
- Regrading of steep slopes required
- Special design considerations for contact areas with roadways, foundations

Cover Design Considerations

Management of runoff to control erosionShoreline protection measures

Preferred Cover Design Alternatives

- Natural soil low permeability barrier cover
- Synthetic barrier cover using HDPE/Bituminous liner
- Synthetic barrier cover using GCL
- Store and release cover

Cover Design Uncertainties

Availability of suitable low permeability soil
 Availability of vegetation substrate
 Final adopted remediation design life
 Final adopted land use
 Overall cost effectiveness
 Risk based groundwater remedial target

Path Forward

- Upper reaches of Hart Creek rechannelled in Sept 2005
- Risk based targets for groundwater currently being derived
- Slope regrading and capping of pile slated for summer 2006

